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611. SOME REMARKS ON THE EULERIAN FUNCTION

L. Carlitz

To Professor D. S. Mitrinovi¢ on his seventieth birthday.

1. The EurLerian function H,(x) can be defined by

1—x

(1.0 - H@E @,
n=0 n

e?—x

It follows from (1.1) that H,(x) is a rational function of x:

Ay (x)
. H =22
(1.2) L=
where
(1.3) 4,0)=3 A, ¥ (nz]).
k=1

The A, , are called EULERIAN numbers. They are positive integers that
satisfy the recurrence

(1.4) Ay o=—k+2)A, +kA,,
and the symmetry relation
(1.5) Api=Apn ey (Lsksn).

The function H,(x) satisfies

(1.6) H,()=(-1yxH,(x)  (=z1)

and

(1.7) xH, (x) = "z(’f)}lj(x) (n=1).
=0/

It follows from (1.2) and (1.3) that (1.5) and (1.6) are equivalent.

FroBENIUS [6] hes discussed properties of H,(x) at length with particu-
lar stress on arithmetic properties. For briefer treatments see [2] and [7].

The writer [3] has proved that

(1.8) -0 H®+HW)'=10-x)H,(y)-(1~y) H,(x) (x#y),
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80 L. Carlitz

“where (H(x)+H(y))n=i (;)Hj(x)H,,_j (). For x=y, we have
j=0

(1.9) = 1) (Hyy )+ H, () =x(H@+HE)  (#20).

We shall show that (1.9) characterizes H,(x). However this is not true
of (1.8). We shall show that if {f,(x))} is a sequence that satisfies

(L10) - ®+/0)=0=-x)1,(N-1-11(X) (n=0)

.and F=F(x, z)=§°ﬁ,(x);—:’ (fo (x)=1) then

n=0
1—x

{1.11 F s = ’
.11 o D= g
‘where

+o n
{1.12) C@H=73c, > (cy=1).

o o

It follows from (1.11) and (1.12) that

Cp (x) < -
, C,(X)=> C, , x<1 nz=1),
s =5 Co (=1

fn(x)=

‘where the coefficients C, , are determined by C(z). Moreover, C, , satisfies
the symmetry condition

(1.13) Cok=Conirs  (I1Sk=n)
if and only if C(z) satisfies
(1.14) C(C(-2)=1.

This condition is equivalent to

@ (2) R
(1.15 C = -, ® =1 d, —.
(1.15) @Gy P@=1+ 540

In the EULERian case, if we put [4]:
A (rs S) = Ar+s+1, r+1= Ar+s+1,s+1 =4 (S’ l‘),
‘the generating function (1.1) becomes
ex—eY

+oo r s
(1.16) S A, ) b Al

(r+s+ 1) xey—ye*

7, s=0

Similarly, if we put C(r, $)=C,.5,1,r41=Criss1,5+1=C(s, ), the generating
function (1.11) becomes

(1.17) SR P 1ot
rse=0 > s+ 1) xd)(y—x)_yq)(y_x)'
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We remark that the functional equation (1.14) as well as the generating
function (1.17) have occurred in [S] in connection with the following combi-
natorial problem: the enumeration of pairs of amicable permutations.

The writer [1] has defined ,,degenerate EULERian numbers by means of

1—x g i

(1.18) 1+ 353 4, , N,
k=1

1—x(1+2z(Q—x)*

where Ay =1. This suggests that we put

1—x

1. —_
(1.19) 1—x(1+Az)e

Lo p

—1+x 5 ZH,0\, %) (p=1).
”=1n!

It is then easy to show that

(1.20) xH, ( Y %) — (=1 H,( %)
and
(1.21) x=»NHK)+HQ, ) =x(1=-H,} )-y(1-x)H, (A, ») (x#).

Note that the notation in (1.18) and (1.19) is somewhat different from
that in the EULERian case.

In view of (1.21) we consider the problem of characterizing sequences
{f.(», %)} sush that f, (A, x)=1 and

(1.22) x=» (SO +f ) =xA =10~y (A =x)f, (4, ¥) (x#Y).

The results are similar to those in the simpler case (1.10). In particular
we show that

+® n —
(1.23) PRACE e
where C (2, z) is a power series in z, C(A, 0)=1. Moreover f,(, x) satisfies
(1.24) xf,,(—x, %) — (= 1y £, (% %)
if and only if
(1.25) CO,2)C(-n —z)=1

or equivalently
(1.26) CO,2)=0Q, 2)/P (-2, —2).

It can be verified that (1.23) implies the symmetrical generating func-
tion (compare (1.17))

(1.27) -go C(r,50) xrys D (—A x—p)—D® (A, y—x)
. 2 a4 (r+S+l)! xP (7\, y—x)_yq) (_)\’ x__y) s
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where £,(h )=(1-9" 5 C, , ()x* (12 1) and
k=1

C(r’ S, )\) =Cr+s+l,r+1 ()\)=Cr+s+1,s+1 (—7\)=C(S, r, — )\)

2. We show first that H,(x) is characterized by (1.9). More precisely let
{f,(x)} be a sequence of functions, f,(x)=1, that satisfy

@) G=D(fr @HLE) =@+ ) (1=0,1,2,..).
Put

2.2) F=F(x, z)=§°f,, (x)ff.
Then "

zrts

=F2

SU@HEre=-3 @i
n=0 .

15!
r, 5=0 risi

On the other hand

Ec (fas1 (X)+f,.(x))z—:'=F,+F (Fzzif).
n=0 n!

oz
Thus (2.1) gives
(2.3) (x—1)(F,+ F)y=xF=.

Solving the differential equation (2.3) we get F(x, z)=c‘(l);x , where
X) e2—Xx

C (x) is some function of x. Since F(x, 0)=f,(x)=1, it follows that C (x)= 1.
Hence

F(x, 2)=1"%, f,()=H,().
ef—X
This proves the following theorem.

Theorem 1. Let {f,(x)} be a sequence of functions, f,(x)=1, that satisfy

249  -D(frr O+HL@)=x (P +f (D)) (n=0,1,2,...).

Then
(2.5) fo(X)=H,(x) (n=10,1,2,..)).

We now consider a sequence of functions {f, (x)} that satisfy
26 -0+ O)y=0-0)f0-0-f,(x)  (x+£y)

for n=0,1, 2, ... Note that for n=0, (2.6) gives f,(x)=1.

As in the previous case we define F=F(x, z) by means of (2.2). Then
it is easily verified that (2.6) implies

2.7 (- F(x 2)F(y, 2)=(1-x)F(y, 2)-(1 =0 F (%, 2).
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Divide both sides of (2.7) by y—x and let y—x. We find that
(2.8) F(x, 2)=(1- ) F,(x, )+ F(x, 2).
It follows from (2.8) that

1—x
. F > = 5
2.9 (x, z2)= Co—=

where C(z) is now a function of z. Since F(x, 0)=f,(x)=1, it is clear that
CcCO)=1.
Substituting from (2.9) in (2.7) we get

O0—(1=x1=y» 1d-xd—y) d—x1—-y)
(C@—x)(C@)—y) C@—y C@E—x

Ed

an identity in x, y and C(z). Hence C(z) is arbitrary except for C(0)=1.
This completes the proof of the following theorem.

Theorem 2. Let {f,(x)} be a sequence of functions that satisfy

2100 -0+ O)=0-0/f0)-1-3) f,(x) (v#x)

for n=0,1,2,... Then

(2.11) | 2 f,.() "

C(z) x’

where C(z) is an arbitrary function of z, C(0)=1. Conversely, (2.11) implies
2.10).
We remark that it follows from (2.10) that

(2.12) (f®+fO)+f @)

_=yd-2 (1 —2)(1—x) —) (1—)
S T )+ T 1 )

and similarly for a larger number of variables. The general formula of this
kind can be proved most easily by expressing the product

1—x, 1—x, 1—x,
C@)—x, C(@—x, C(z)—x,

as a sum of partial fractions.

3. We shall now assume that C(z) is analytic in the neighborhood of the
origin:

G.1) C(z)=:§)cn§, co=1.
Put
(3.2) (C@@)—1)k= z "‘”' *k=1,2,...).

6*
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Then
1—x _ 1—x
C@)—x (C@H—-1)+(1—x

S S (= 1) (C ()= 1)
k=1

+ oo Zn n
—1+§(x—1)kzc"‘” =1+ 3 Z3 edx-1)*
n=1" k=1
_1+z (x—l)"' z ¢ (x— 1k,
Comparison with (2.11) gives
(3.3) £ (x)=(x=1)"" z e® (x— 1k (n=1,2,..)).

Hence, for n>1, f,(x) is a rational ftunction of x. We may put

Cn
(3.4) FAC: )_—"‘)) C)=3 Coixtt  (nz1).
k=1
Note that
(3.5 : C=cP=c,.

In view of (1.5) it is of interest to determine whether C, , satisfies the
symmetry relation

(3.6) Cok=Crnir1  (1Sk=n)
for appropriate C(z). The relation
3.7 Ja(=0)=(-1)"x f,(x) (nz1)

is equivalent to (3.6).
Making use of (3.7), we have

Fat=1+x S (-1 f,00 %= 1+x(F(x ~2)-1D),
n=1 n
so that
3.9) F(x ', 2)=1-x+xF(x, —2).
Thus by (2.11)

R et S BRSPS 1 G N
C(z)—x~! C(—z)—x

Simmplifying, we get
3.9 C()C(-2)=1.
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The steps are reversible and therefore (3.9) is a necessary and sufficient
condition that (3.6) is satisfied.

The condition (3.9) is obviously satisfied by C(z)=e¢’. More generally
it is satisfied if

D (2)
. C@)= ,
(3.10) @
where

+ o n
11 d(z)=1 dZ,
@3.11) @=1+3 .5

is any function analytic about the origin such that & (0)=1.
Conversely (3.9) implies (3.10). To prove this put C(2)=E(z)+E, (2),
where E(z) is even and E, (z) is odd. Then
C@@)C(-2)=(E@)+E, () (E@@ - E (2),
so that, by (3.9),

(3.12) E2(z2)-Ez2(z)=1, E,(5)=VE?(z)~ 1.
Consider
E(z)—1 VE@+1 +VE(z)—1
D ()= 1+ =P —
@)= @) ( E@+1 ) o®) VE@+1

where ®,(z) is an arbitrary even function, ®,(0)=1. Then

O (~2)= D, (2) VE(@)+1 —VE(z)—1 ’

VE@) +1

@ (2) _ VE@+1 +VE(2)—1
®(—2) VYE@+1—VE@—1

=~;—(VE(2)+1 +VE(@—1)?

—E@)+VE (2)—1=C(2).

This completes the proof of

Theorem 3. Let the sequence {f, (x)}1+ ® satisfy (2.10). It will also satisfy

(3.13) fl=D=(-1Pxf,(d  (=1,2,..)

if and only if the coefficient C, , satisfies

(3.14) Cok=Crnirs  (1Sksn).
+o  p

The condition (3.13) is satisfied if and only if C(2)=1+ > cnz—' satisfies

n—1 n:

(3.15) C(z)C(-2)=1

or equivalently

- %@ e s a
(3.16) C(z)= PYar D(2)=1 +'Zld,,n! .
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If we replace z by (x— 1)z the generating function becomes

- t xr Q (x—y)—C(y—x)
. C ’ - ’
3.17) 2 €9 (r+s+D! x®(y—x)—y ® (x—))

r,s=0

where C(r, s)=Cr+s+1,r+1= Crisirse =C(s, r).

We remark that if G—G (x, y) = —F=N=P0=0)
X ® (r—D)—y @ (x—)
fied that

(3.18) G,+G,=G
Also
G +%G,+yG, = (x— ) (® (x - N D' (= X) + @ (y— %) ' (x—)),
1+ (x+Y) G+ xyG?=(x—y)> O (x—y) D (y —x).

It follows that

it can be veri-

“LZ” c(, s) Xy _ x—=3* (D (x—)) D' (y—x) + D (y—x) ®' (x—»))
R (S ] (x® (—0)—y © (x—y))?

Only in the EULERian case (C(r, s)=A(r, s)) do we have

P (1426 (5, ) (1436 (5, ).

+ oo
S C(r, )

r,s=0

It follows from (3.17) that

Z” cw,s) arts  2@0°(0) g
ySo st 1-2x @) 1—cx
.so that 2 C(r,s)=c,"*!(n+1)! or, what is the same,
r+s+n
(3.20) C,r=c"n!

k=1
4. We now consider the ,,degenerate EULERian number A4, ,(A) defined by

1—x t® p o1
1 =1+3> = Ak - 1).
“h I—x(1+2rz(1—x)* +'Zl nl kgl Ap, ke W (Aw=1)

It follows that A, ,(») is a polynomial in A. Put

XH, 00 ) =(1-9™ 5 4,,M)x @z,
k=1
so that (4.1) becomes
“.2)

1—x
1—x 1+ Az)*

S H
_'zon! (A5 X).
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1t folows from (4.2) that H,(}, x) satisfies
4.3) x(Q0-NH,0 -y =) H,Q == (HG )+HQ )Y (x#Y)

where H, (A, x)= 1. Differentiation of (4.2) with respect to z yields

+o n - U1 — )2
x(1—9)(1+2%) S ;—‘HH,()\)=( 1—x )2— a—x
n=0

1—x(+22*)  1—x(l+rz)*
Comparing coefficients of z", we get
@49 (1-x)H,, )+ -x)A+n)H, A, x)=(H®, x)+H(®, x))"

To get the quasi-symmetry property we replace A by —A and x by x~?!
in (4.2). This gives

(.5) xH,,(— A l) —(—)H,(,%  (nz=]).
X
Since H,(», x)=(1—-x)"" i A, () x*, (4.5) is equivalent to
k=1
.6) Aprisi W=4, (=2 (ISksn).
Now let {f,(», x)}¢ ° be a sequence such that f, (A, x)=1 and

“.7) A=2f01 , 0)+A =) +nN)f, (A, Xx)

=(f(n, )+ (A, x)) n=0,1,2,..)).
Put

(.8) F=FQ\, x, z)=+§f,, 0O, )%
n=0 n!

+ o0

zn .
nf,(x, x)=—, it
0 n!

-

+oo n
Since F, (A, x, 2)= 3 fou:1 (M x)z—' and zF, (A, x, 2)=
0 n.

n= n=

follows from (4.7) that
“.9) (I-x)(1+r2)F,=F*—(1—x)F.
The general solution of (4.9) is
Fol+x K (1+22)"
Since F(A, x, 0)=1, K=x and therefore

1—x

X, Z)=—.
FQ. x 2) 1—x(1+rz)*

We may state:
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Theorem 4. Let {f, (A, x)}d ~ denote a sequence such that f,(\, x)=1 and
(1=fori MW D+A =) A+ [, D) =f A D +f 0 (n=0,1.2,..)).

Then
fu(Ax)=H,(», x) n=0=0,1,2,..)).

We now consider a sequence {f, (A, x)¢ ° such that
(4.10) X(L=fa s )=y (A =21, (% y)
=@x=n(f QD) +f O 0)(x#y); n=0,1,2,...
Again define F(, x, z) by (4.8). Then (4.10) implies |
@1 x(I-NFM x,2)—y(1—-x)F(\, y,2)=(x—FQ, x, 2 F(\, », 2).

Divide both sides of (4.11) by x—y and let y —»>x. We get

4.12) F2(p x,2)=F(\, x,2)+x(1=x) F, (%, x, 2).
The general solution of (4.12) is
1—x
4.13 F,x,2)=——"—.
( ) ( * Z) 1—xC (), z)

Since F(», x, 0)=1, C(», 0)=1.
This proves
Theorem 5. Let {f, (A, x}o ™ denote a sequence such that f,(\, x)=1 and
(=910 )=y (1 =21, y)
=x=( )+, ) (x#£y; n=0,1,2,...).

Then
(4.14) +°°f oo 1=x

' Eo U 1—xC )
where
(4.15) CO =1+ c, ()"

n=1
5. We now require that f, (A, x) satisfy
(.1) xfu( = i)=(— yf,0.% (=),
X

It follows that

+ Zn Foo i o~

n= n
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so that
(5.2) FO, x, z)=1~x+xF(—7\, L —z).
X
Hence by (4.14) and (5.2),
1—x 1 x(I—=x"1
1—xC(, 2) 1—x"1C(—) —z2)
Simplifying, we get
5.3 C(h2)C(—2, —2)=1.
We shall show that (5.3) is equivalent to
@ (2, 2)
5.4 C, 2)=——"-—""—
(5.4) 0, D=5 200
It follows from (5.3) that
(5.5) log C (A, 2) +logC(—2, —2z)=0.
+ o +oo
Thus we may put log C (A, 2)= > > ¢, z% by (4.15) the lower limit
r=0 s=1

for s=1. Hence, by (5.5), Z(1+(—1)’”) ¢ N z5=0, so that

(5.6) ¢,,=0 (r+5=0 (mod 2)).
Let P(), z) denote a power series in A and z: P(A, z)=.p,, ”"z° and
consider the functional equation .
.7 P, 2)—P(—2r 2)=logC(, 2).
This is equivalent to
(5.8) (1= (= 1y*) pry=c.

For r+s=0 (mod 2), (5.8) is satisfied automatically because of (5.6);
for r+s=1 (mod 2), p,, is uniquely determined by (5.8). Hence, for ® (2, z)
=exp P (A, z), we get (5.4).

The ceries ® (A, z) is of course not uniquely determined; the above
proof indicates that ® (i, z) may be multipled by an arbitrary series of the
form 2 d, Nz

r+s=0(Q)
Summing up, we state

Theorem 6. Let the sequence {f,(\, x)}1 * satisfy (4.10). It will also satisfy

(5.9) xf,,(—)\, %)=(—l)"f,,(7\, X (=1,2,..)
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if and only if

«5.10) CA2)C(—2, —2)=1

or equivalently

A5.11) C, 2)=D @, 2)/P (-2, —2),

‘where ® (\, z) may be assumed to be of the form ® (3, z) =rzs a, N z5 and

«5.12) a,,=0 (r+s5>0; r+s=0 (mod 2)).

As an example, for C (3, z)=(1+22)*, we may take @ (A, z)=(1+ A zZ)»/2,
.although this choice of ® (3, z) does not satisfy (5.12).
By (4.14) and (5.11) we have

(5.13) 1452 S ¢ Ok X
' ,,gl n! ,Z:l mk 1—xC (, z—xz)

_ (1—x) ® (—*, xz—Xx)
D (—\ xz2—x)—x P (A, z—x2) ’

“where

(=27 f, 00 D=5 Cpi () 5.
k=1

Replacing x by xz~! in (5.13) we get after a little manipulation

«5.14) “LZ‘” Clr s,y X2 @000 (=)
oo T Vsl y® (A x—)—x® (0 y—0)

‘where
"(5'15) C(r’ S, )\) = Cr+s+1,r+1 0‘) =Cr+s+1,.r+1 (_' 7\) =C(S, r, — 7\)-

It is evident frum (4.2) that H,(A, x) is a polynomial in A of degre =n.
More precisely it follows from

Hy0h 9=(1=0" 4,0, %), A,0, %)= S 4, , ()%,

k=1

that 4, (2, x) is a polynomial of degree <n in x and of degree =n—1 in A.
Moreover it is proved in [1] that 4, ,(») is a polynomial in A of degree
n—1 for k=1,...,n

In the more general case of f, (A, x), we can again assert that

(1=x)"f, (% %)
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is a polynomial of degree =n in x. As for the parameter A, if we put

(5.16) CQ, z)=1+§cn(x);—:'

n=1

and assume that ¢,(}) is a polynomial of degree =<n—1 in A, then this is
also true of C, ,(}). Also it follows from (4.14) and (5.16) that

Cn.] ()‘) = cn ()‘)
Hence, if (5.9) is assumed to hold, we get
Cmn()\)=cn,l (_)‘)=cn('— )\)
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