
UNIV. BEOGRAD. PUDLo ELEKTROTEHN. FAK.

Ser. Mat. Fiz. N. 602-N. 633 (1978). 79-91.

611. SOME REMARKS ON THE EULERIAN FUNCTION

L. Carlitz

To Professor D. S. Mitrinovic on his seventieth birthday-

1. The EULERian function Hn (x) can be defined by

(1.1) 1 +00 n

L., n, k

eZ-x n~O n!
(X:F I).

It follows from (1.1) that Hn(x) is a rational function of x:

Hn (x) =
.An (x)

,
(x-l)n

(1. 2)

where

(1.3)
n

A (x ) = "A xk-l
n L., n,k

k~l

(n;;; I).

The An, k are called EULERIAN numbers. They are positive integers that:
satisfy the recurrence

(1.4) An+l.k = (n - k + 2) An,k-l + kAn.k

and the symmetry relation

( 1.5) (1 ;;, k;;, n).

The function Hn (x) satisfies

(1. 6)

and

(n;;;l)

xHn (x) =
j~

(~) Hj (x) (n;;; I).

It follows from (1.2) and (1.3) that (1.5) and (1.6) are equivalent.

FROBENIUS[6] hr.~.discussed properties of Hn (x) at length with particu-
lar stress on arithmetic properties. For briefer treatments see [2] and [7].

The writer [3] has proved that

(1.7)

(1. 8) (y
- x) (H (x) + H (y))n = (I - x) Hn (y) - (1- y) Hn (x)
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:go L. Carlitz

where (H(X)+H(y)n=j~J;)Hj(X)Hn-j(Y)' For x=y, we have

(x-l)(Hn+1 (x) +Hn (x)) =x (H(x) +H(x)n (n~O).

We shall show that (1.9) characterizes Hn (x). However this is not true
of (1.8). We shall show that if Un (x))} is a sequence that satisfies

'{1.10) (y- x) (I(x) + I (y)n = (1- x) In (y) - (1- y)ln (x) (n ~ 0)

+ 00 zn
and F= F(x, z) = L In (x) - (fo (x) = 1) then

n~O n!

.(1.11)
I-xF (x, z) = ,

C (z)-x
where

«1.12)

It follows from (1.11) and (1.12) that

J. (x ) =
Cn(x) , C (x ) = ~ C Xk-I

n ( I) n n L.. n. k
x- k=1

(n ~ 1),

-where the coefficients Cn.k are determined by C(z). Moreover, Cn.k satisfies
the symmetry condition

~1.13) (l7£k ;i,n)

if and only if C (z) satisfies

«1.14) C (z) C ( - z) = 1.

This condition is equivalent to

-(1.15) C (z) =
<I> (z)

-, cp (z) = 1 + Y dn
zn

.
<I>(-z) n~1 n!

In the EULERian case, if we put [4]:

A(r, s)=Ar+S+I.r+1 =Ar+S+I.S+1=A(s, r),

the generating function (1.1) becomes

(1.16)
+00 xr yS eX-eY

L A(r, s) --= .
r.s~O (r+s+ I)! xeY-yeX

Similarly, if we put C (r, s) = Cr+S+I.r+ 1= Cr+S+1.S+1= C(s, r), the generating
function (1.11) becomes

,(1.17)
+00

C(r, s) ~~=
<I>(x-y)-<I>(y-x)

.
r.~o (r+s+I)! x <I>(y-x)-y <I> (y-x)
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We remark that the functional equation (1.14) as well as the generating
function (1.17) have occurred in [5] in connection with the following combi-
natorial problem: the enumeration of pairs of amicable permutations.

The writer [1] has defined "degenerate" EULERian numbers by means of

( 1.18)

where A(L= 1. This suggests that we put

(1.19) (A(L= 1).

It is then easy to show that

(1.20)

and

(1.21) (x- y)(H(A, x) + H(A, y»)n =x(I - y) Hn(A, x) - y (1 - x) Hn (A, y) (x 7'=y).

Note that the notation in (1.18) and (1.19) is somewhat different from
that in the EULERian case.

In view of (1.21) we consider the problem of characterizing sequences
{In (A, x)} sush that fo (A, x) = 1 and

(1.22) (x- y) (1(1., x) + f(A, y»)n = x (I - y)fn(A, x) - y(I - x)fn (A, y) (x 7'=y).

The results are similar to those in the simpler case (1.10). In particular
we show that

(1.23)

where C (A, z) is a power series in z, C (A, 0) = 1. Moreover fn (A, x) satisfies

(1.24) xf" (- A, :) = ( - l)n fn (A, x)

if and only if

(1.25) C (A, z) C ( - A, - z) = 1

or equivalently

(1.26) C (A, z) = <I>(A, z)/<I>( - A, - z).

It can be verified that (1.23) implies the symmetrical generating func-
tion (compare (1.17»)

(1. 27) ~oo
C(r,s,A)

xryS
-

<l>(-A,X-y)-<l>(A,y-X)

r,s~O (r+s+1)! - X<l>(A,y-X)-y<l>(-A,X-Y)'

6 Publikacije Elektrotehnickog fakuIteta
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n
where fn CA, x) = (1- x)-n 2; Cn.k ("A)Xk (n ~ 1) and

k~1

C (r, s, "A)= Cr+S+ l,r+1 ("A)= Cr+S+ P+1 ( -"A) = C (s, r, - "A).

2. We show first that Hn (x) is characterized by (1.9). More precisely let
{In (x)} be a sequence of functions, fa (x) = 1, that satisfy

(2.1) (x- 1) (In+ I (x) +fn (x) = x (f(x) +f(x)n (n=O, 1,2,.. .).

Put

(2.2)
+ 00 zn

F=F(x, z)= 2; fn(x)-.
n~O n!

Then
+00 zn +00 zr+s

2; (f(x)+f(x)n_= 2; f,.(x)fs(x)-=F2.
n=O n! r, s~O r! s!

On the other hand

Thus (2.1) gives
(2.3) (x-l)(Fz+F)=xF2.

Solving the differential equation (2.3) we get F(x, z) =
I-x, where

C (x) eZ-x
C (x) is some function of x. Since F (x, 0) = fa (x) = 1, it foIlows that C (x) = L
Hence

I-xF(x, z)=-, fn(x)=Hn(x).
eZ-x

This proves the foIlowing theorem.

Theorem 1. Let {In (x)} be a sequence of functions, fo (x) = 1, that satisfy

(2.4) (x- 1) (/"+1 (x)+/" (x) =x(f(x)+f(x»n (n=O, 1,2, ...).

Then
(2.5) fn (x) = Hn (x) (n = 0, 1, 2, . . .).

We now consider a sequence of functions {fn (x)} that satisfy

(2.6) (y - x) (f(x) + f(y)n = (1- x)fn (y) - (1- y)fn (x) (xi: y)

for n = 0, 1, 2, . .. Note that for n = 0, (2.6) gives fo (x) = 1.
As in the previous case we define F = F (x, z) by means of (2.2). Then

it is easily verified that (2.6) implies

(2.7) (y-x)F(x, z)F(y, z)=(1-x)F(y, z)-(I-y)F(x, z).
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Divide both sides of (2.7) by y - x and let y -H. We find that

(2.8) F2(x, z)=(1-x)FAx, z)+F(x, z).

It follows from (2.8) that

I-xF(x, z)= ,
C (z)-x

where C (z) is now a function of z. Since F (x, 0) =.to (x) = I, it is clear that
C (0) = l.

Substituting from (2.9) in (2.7) we get

(2.9)

(y-X) (I-x)(I-y)
-

(I-x)(I-y)_- (I-x) (I-y)

(C(z)-x)(C(z)-y) C(z)-y C(z)-x

an identity in x, y and C (z). Hence C (z) is arbitrary except for C (0) = 1.
This completes the proof of the following theorem.

Theorem 2. Let {In (x)} be a sequence of functions that satisfy

(2.10) (y- x) (f(x) + f(y)n = (l-x)fn (y) - (I - y)fn (x)

for n=O, 1,2, ... Then

(2.11)

where C (z) is an arbitrary function of z, C( 0) = 1. Conversely, (2.11) implies
(2.10).

We remark that it follows from (2.10) that

(f(x) +f(y) +f(z)n

=
(I-y) (I-z)

fn (x) +
(I-z) (I-x)

fn (y) +
(I-x) (I-y)

fn(z)
(x-y) (x-z) (y-z) (y-x) (z-x) (z-y)

and similarly for a larger number of variables. The general formula of this
kind can be proved most easily by expressing the product

(2.12)

I-xl I-X2
C (z)-xl C (z)-x2

as a sum of partial fractions.

I-xn
C (z)-xn

3. We shall now assume that C (z) is analytic in the neighborhood of the
origin:

(3.1)
+ 00 zn

C (z) = 2: cn -, Co= 1.
n=O n!

Put

(3.2) (k = 1, 2, . . .).

6°
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Then

I-x
C (z)-x

+00

-1 + L (x-l)-k(C(z)-I)k
(C(z)-I) + (I-x) k~1

I-x

+00 +00 n +00 n n

= 1 + L (X-l)-k L
C<;)~= 1+ L ~ L C~k)(X-l)-k

k=l n~k n. n=1 n. k=1

+00 n n

= 1 + L (x-l)-n ~ 2:
C~k)(x- l)n-k.

n~1 n. k~l

Comparison with (2.11) gives

(3.3)
n

In(x)=(x-l)-n L
C~k)(x-l)n-k

k=1
(n = 1, 2, . . .).

Hence, for n ~ 1, In (x) is a rational tunction of x. We may put

(3.4) In (x) =
Cn(x) , Cn(x) = i Cn,kxk-I

(x-1)n k~1

Note that

(n ~ 1).

(3.5)

In view of (1.5) it is of interest to determine whether Cn,k satisfies the
symmetry relation

(3.6) (1~k~n)

for appropriate C (z). The relation

(3.7) In ( - x) = ( - l)n X In (x) (n ~ 1)

is equivalent to (3.6).

Making use of (3.7), we have

+00 zn
F(X-I, z)= I +x L (-I)nln(x)-= I +x(F(x, -z)-I»,

n~l n!

so that

(3.8) F(x-'1, z)= l-x+xF(x, -z).

Thus by (2.11)

=I-x+
x (I-x)

C (-z)-xC (z)-x-1

Simmplifying, we get

(3.9) C (z) C ( - z) = 1.
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The steps are reversible and therefore (3.9) is a necessary and sufficient
condition that (3.6) is satisfied.

The condition (3.9) is obviously satisfied by C (z) = eZ. More generally
it is satisfied if

(3.10) C (z) =
<I>(z) ,

<I>(-z)

where

(3.11)

is any function analytic about the origin such that <I>(0) = 1.
Conversely (3.9) implies (3.10). To prove this put C (z) = E (z) + E1 (z),

where E (z) is even and E1 (z) is odd. Then

C (z) C (- z) = (E(z) +E1 (z» (E(z) - E1 (z»),
so that, by (3.9),

(3.12)

Consider

<I>(z) = <1>0(z) (1 + VE
(z)-1 )= <1>0(z)

V.Efz)+T + VE (z)-1
E(z) + 1

VE(z) + 1

where <1>0(z) is an arbitrary even function, <1>0(0) = 1. Then

<I> (-z)=<I>o(z)
VE(z)+I-VE(z)-1 ,

VE(z) + 1

<I>(z) VE(z) + 1 + VE(z)-1 1
(V V )2

= -- E(z)+1 + E(z)-1
<I>(-z) VE(z)+I-VE(z)-1 2

= E (z) + VE2 (z) - 1 = C (z).

This completes the proof of

Theorem 3. Let the sequence {fn(x)}too satisfy (2.10). It will also satisfy

(3.13) (n = 1, 2, . . .)

if and only if the coefficient Cn.k satisfies

(3.14) Cn.k=Cn.n-k+1 (I-;i;,k-;i;,n).
+00 n

The condition (3.13) is satisfied if and only (f C (z) = 1 + L cn ~
n~1 n.

(3.15) C(z)C(-z)=1

or equivalently

satisfies

(3.16)
<I>() +00 zn

C (z) = --= , <I>(z) = 1 + L dn -.
<I>(-z) n~1 n!
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If we replace z by (x - I) z the generating function becomes

~oo
G (r, s)

xr ys
-

II>(x-y)-II> (y-x)

r. s=O
(r + 8 + I)! x II>(y-x)- y II>(x- y)

,

where G(r, s)=Cr+s+I.r+l = Cr+s+1.s+1 =C(s, r).

We remark that if G = G (x, y) =
II>(x-y)-II> (y-x)

, it can be
x II>(y-x)-y II>(x-y)

(3.17)

veri-

fied that

(3.18)

Also

G +xGx+ yGy = (x- y)2 (<I>(x- y) <1>'(y-x) +<1>(y-x) <1>'(x- y»,

1 + (x + y) G + xyG2 = (x - yf <I>(x - y) <I>(y - x).

It follows that

+00 xr yS (X-y)2 (II>(x-y) 11>'(y-x) + II>(y-x) 11>'(x-y»
2:

C(r, s) ~=

r. s=o
(r + 8)! (x II>(y-x)-y II>(X-y»2

Only in the EULERian case (C (r, s) = A (r, s» do we have

+00 xr ys

2: G (r, s) ~ = (1 + xG (x, y» (1 + yG (x, y».
r. s=o (r + 8)!

It follows from (3. I7) that

+ 00 xr+s 211>' (0) c

2:
C(r, s) = =~"

r, s=o (r+8+ I)! 1-2 xII>' (0) I-c. x

. so that 2: C (r, s) = Cln+1(n + I)! or, what is the same,
r+s+n

(3.20)
n

2: Cn,k=clnn!
k=1

4. We now consider the "degenerate" EULERian number An.k (A) defined by

(4.1) 1 +00 n n-x
- 1 + 2:

~
2: A dA)xk

I-x(I+Az(I-x»1L n~1 n! k=1
n.

It follows that An.k (A) is a polynomial in A. Put

n
XHn(A, x)=(I-x)-n 2: An.k(A)xk

k=1
(n ~ 1),

so that (4.1) becomes

(4.2) I-x +00 zn
= 2: -Hn(A, x).

I-x (1 + AZ)1Jo
n=O n!
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It folows from (4.2) that Hn (A, x) satisfies

(4.3) x(I- y) Hn (A, x) - Y (1- x) Hn (A, y) = (x- y)(H(A, x) +H(A, y»)n (x"t:y)

where Ho (A, x) = 1. Differentiation of (4.2) with respect to z yields

+00 zn ( I-x )
2 '(I-X)2

X I-x I+Ax -H A = ---( )(
)n~on!

n+I()
l-x(I+Az)1L l-x(I+Az)Ilo'

Comparing coefficients of zn, we get

€4.4) (l-X)Hn+1 (A, x)+(1-x)(1 +nA)Hn(A, x)=(H(A, x)+H(A, x»)n.

To get the quasi-symmetry property we replace A by -A and x by x-I
in (4.2). This gives

€4.5) (n ~ 1).

n

Since Hn (A, x) = (1- x)-n L An,dA) x", (4.5) is equivalent to
k~1

€4.6) (1 ~k~n).

Now let {In (A, x)}jjOO be a sequence such that 10 (A, x) = 1 and

{4.7) (1- x) In + I (A, x) + (1- x)(1 +n A)ln (A, x)

= (I(A, x) +1 (A, x»)n (n = 0, 1, 2, . . .).
Put

{4.8)
+00 zn

F==F(A, x, z)= Lln(A, x)-.
n~O n!

+00 zn +00 zn .
Since Fz (A, x, z) = L In+ I (A, x) - and zFz (A, x, z) = L nln (A, x) - , It

n~O n! n=O n!

follows from (4.7) that

{4.9) (1- x)(1 + Az) Fz = pl- (1- x)F.

The general solution of (4.9) is

F-l +x
= K (1 + Az)lL.

F

Since F (A, x, 0) = 1, K = x and therefore

I-xF(A, x, z)= .
l-x(1 + AZ)IL

We may state:
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Theorem 4. Let {In (:1..,x)};j
00

denote a sequence such that 10 (A, x) = 1 and

(1- x) In + 1 (A, z) + (1- x)(1 +n A)ln (A, x) =/(A, x) +/(A, x))n (n=O, L 2, .. .).

Then

In (A X)=Hn(A, x) (n = 0 = 0, 1, 2, .. .).

We now consider a sequence {In (A, x);jOO such that

(4.10) x (1- y)ln (A, x) - y (1 - x)ln (A, y)

= (x - y) (f (A, x) +1 (A, y) )n(x:;t:y); n = 0, 1, 2, . . .

Again define F(A, x, z) by (4.8). Then (4.10) implies

(4.11) x(1-y)F(A, x, z)-y(1-X)F(A, y, z)=(X-y)F(A, x, Z)F(A, y, z).

Divide both sides of (4.11) by x- y and let y--+x. We get

(4.12) F2 (A, x, z) =F(A, x, z) +x(1- x)Fx (A, x, z).

The general solution of (4.12) is

(4.13) I-xF(A,X,Z)= .
I-xC(A, z)

Since F(A, x, 0) = 1, C (A, 0) = 1.

This proves

Theorem 5. Let {In (A, x};jOO denote a sequence such that 10 (A, x) = 1 and

x (1- y)ln (A, x) - Y (1- x)ln (A, y)

=(X-y)(f(A, X)+f(A,y))n (x:;t:y; n=O, 1,2, ...).
Then

(4.14)
+00 zn I-x
'i,ln(A, x),=

1- C(A )'n~O n. x, z

where

(4.15)
00

C(A, z)= 1 + 'i, Cn(A)Zn.
n~l

5. We now require that In (A, x) satisfy

(5.1) (n ~ 1).

It follows that

+00

( I )
Zn +00

( I )
Z1l

F(A,x,z)=I+x 'i, (-l)nln -A,- ,=I-x+x'i, (-Illn -A,-
"n~l x n. n~O X n.
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so that

(5.2) F(A, x, z)= 1-X+XF( -A, ~, -z).

Hence by (4.14) and (5.2),

I-x
l-xC(A, z)

1
x(l-x-1)

- -X+ .l-x-1 C(-A, -z)

Simplifying, we get

(5.3) C (A, z) C ( - A, - z) = 1.

(5.4)

We shall show that (5.3) is equivalent to

C (A, z) =
<1>(A,z) .

<1>(-A, -z)

It follows from (5.3) that

(5.5) log C (A, z) + log C ( - A, - z) = O.

+00 +00

Thus we may put log C (A, z) = 2: 2: CTSATzS; by (4.15) the lower limit
T~O s= 1

for s ~ 1. Hence, by (5.5), 2: (1 + (- 1)'+8) cTSATZS= 0, so that
T, S

(5.6) CTS=O (r+s=="O (mod 2».

Let peA, z) denote a power series in A and z: P (A, z) = 2:PTsATZS and'
T, S

consider the functional equation

(5.7) P (A, z) - P ( - A z) = log C (A, z).

This is equivalent to

(5.8)

For r -ts=:O (mod 2), (5.8) is satisfied automatically because of (5.6);:
for r+s==l (mod 2), PTS is uniquely determined by (5.8). Hence, for <l>(A,z)
= exp P (A, z), we get (5.4).

The ~.eries <l>(A, z) is of course not uniquely determined; the abov~
proof indicates that <l>(A, z) may be multipled by an arbitrary series of the:
form 2: dTsATzS.

T+S'=;'O
(2)

Summing up, we state

Theorem 6. Let the sequence {In (A, x)}too satisfy (4.10). It will also satisfy

(5.9) (n= 1,2,...)
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if and only if

,{5.10) C (A, z) C ( - A, - z) = 1

-or equivalently

{5.11) C (A, z) = <I>(A, z)/<I>( - A, - z),

where <I>(A, z) may be assumed to be of the form <I>(A, z) = L a,s A' ZS and

'. s

.(5.12) a,s = 0 (r+s>O; r+s=="O (mod 2)).

As an example, for C(A, Z)=(1+AZ)iJ., we may take <I>(A, Z)=(1+AZ)iJ./2.

although this choice of <I>(A, z) does not satisfy (5.12).

By (4.14) and (5.11) we have

(5.13)
+OOzn n

k I-x1+ L - L Cn.dA)x =
n=l n! k~l I-xC(A, z-xz)

(I-x) <II(-A, xz-x)
= ,

<I>(-A, xz-x)-x<l> (A, z-xz)

-where
n

(1 - x)n fn (A, x) = L Cn.k (A) xk.
k=l

Replacing x by xz-1 in (5.13) we get after a little manipulation

.{5.14)
+00 x,ys <I>(A,y-X)-<II (-A,X-Y)

L C (r, s, A) = ,
"s~O (r+s+ I)! y<l>(-A,X-y)-x<l> (A,y-X)

-where

.(5.15) C (r, s, A)= C'+S+l,'+l (A)= C'+S+l,S+l (- A)= C (s, r, - A).

It is evident frum (4.2) that Hn (A, x) is a polynomial in A of degre ;£n.
More precisely it follows from

Hn (A, x) = (I - x)-n An (A, x),
n

An (A, x) = L An,k (A)Xk,
k=l

that An (A, x) is a polynomial
Moreover it is proved in [1]
.n - 1 for k = 1, . . . , n.

In the more general case

of degree ;£n in x and of degree ;£ n - 1 in A.
that An.k (A) is a polynomial in A of degree

of fn (A, x), we can again assert that

(1 - x)nfn (A, x)



Some remarks on the Eulerian function 91

IS a polynomial of degree ~ n in x. As for the parameter A, if we put

(5.16)
+00 zn

C(A, z)= 1 + L Cn(A)-
n=1 n'

and assume that cn (A) is a polynomial of degree ~ n - 1 in A, then this is
also true of Cn.k(A). Also it follows from (4.14) and (5.16) that

Cn.! (A) = cn (A).

Hence, if (5.9) is assumed to hold, we get

Cn.n (A)= Cn.! ( - A)= cn ( - A).
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