UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 602—№ 633 (1978), 79—91.

611. SOME REMARKS ON THE EULERIAN FUNCTION

L. Carlitz

To Professor D. S. Mitrinović on his seventieth birthday.

1. The EULERian function $H_n(x)$ can be defined by

(1.1)
$$\frac{1-x}{e^{z}-x} = \sum_{n=0}^{+\infty} H_{n}(x) \frac{z^{n}}{n!} \qquad (x \neq 1).$$

It follows from (1.1) that $H_n(x)$ is a rational function of x:

(1.2)
$$H_n(x) = \frac{A_n(x)}{(x-1)^n},$$

where

(1.3)
$$A_n(x) = \sum_{k=1}^n A_{n,k} x^{k-1} \qquad (n \ge 1).$$

The $A_{n,k}$ are called EULERIAN numbers. They are positive integers that satisfy the recurrence

(1.4)
$$A_{n+1,k} = (n-k+2)A_{n,k-1} + kA_{n,k}$$

and the symmetry relation

(1.5)
$$A_{n,k} = A_{n,n-k+1}$$
 $(1 \le k \le n).$

The function $H_n(x)$ satisfies

(1.6)
$$H_n(x^{-1}) = (-1)^n x H_n(x) \qquad (n \ge 1)$$

and

(1.7)
$$xH_n(x) = \sum_{j=0}^n {n \choose j} H_j(x) \qquad (n \ge 1).$$

It follows from (1.2) and (1.3) that (1.5) and (1.6) are equivalent.

FROBENIUS [6] has discussed properties of $H_n(x)$ at length with particular stress on arithmetic properties. For briefer treatments see [2] and [7].

The writer [3] has proved that

(1.8)
$$(y-x)(H(x)+H(y))^n = (1-x)H_n(y) - (1-y)H_n(x)$$
 $(x \neq y),$

where
$$(H(x) + H(y))^n = \sum_{j=0}^n {n \choose j} H_j(x) H_{n-j}(y)$$
. For $x = y$, we have

(1.9)
$$(x-1)(H_{n+1}(x)+H_n(x)) = x(H(x)+H(x))^n \quad (n \ge 0).$$

We shall show that (1.9) characterizes $H_n(x)$. However this is not true of (1.8). We shall show that if $\{f_n(x)\}\$ is a sequence that satisfies

(1.10)
$$(y-x)(f(x)+f(y))^n = (1-x)f_n(y) - (1-y)f_n(x)$$
 $(n \ge 0)$

and
$$F = F(x, z) = \sum_{n=0}^{+\infty} f_n(x) \frac{z^n}{n!}$$
 $(f_0(x) = 1)$ then

(1.11)
$$F(x, z) = \frac{1-x}{C(z)-x},$$

where

(1.12)
$$C(z) = \sum_{n=0}^{+\infty} c_n \frac{z^n}{n!} \qquad (c_0 = 1).$$

It follows from (1.11) and (1.12) that

$$f_n(x) = \frac{C_n(x)}{(x-1)^n}, \ C_n(x) = \sum_{k=1}^n C_{n,k} x^{k-1} \qquad (n \ge 1),$$

where the coefficients $C_{n,k}$ are determined by C(z). Moreover, $C_{n,k}$ satisfies the symmetry condition

(1.13)
$$C_{n,k} = C_{n,n-k+1}$$
 $(1 \le k \le n)$

if and only if C(z) satisfies

(1.14)
$$C(z) C(-z) = 1.$$

This condition is equivalent to

(1.15)
$$C(z) = \frac{\Phi(z)}{\Phi(-z)}, \quad \Phi(z) = 1 + \sum_{n=1}^{+\infty} d_n \frac{z^n}{n!}$$

In the EULERian case, if we put [4]:

$$A(r, s) = A_{r+s+1, r+1} = A_{r+s+1, s+1} = A(s, r),$$

the generating function (1.1) becomes

(1.16)
$$\sum_{r,s=0}^{+\infty} A(r,s) \frac{x^r y^s}{(r+s+1)!} = \frac{e^x - e^y}{xe^y - ye^x}$$

Similarly, if we put $C(r, s) = C_{r+s+1, r+1} = C_{r+s+1, s+1} = C(s, r)$, the generating function (1.11) becomes

(1.17)
$$\sum_{r,s=0}^{+\infty} C(r,s) \frac{x^r y^s}{(r+s+1)!} = \frac{\Phi(x-y) - \Phi(y-x)}{x \Phi(y-x) - y \Phi(y-x)}.$$

We remark that the functional equation (1.14) as well as the generating function (1.17) have occurred in [5] in connection with the following combinatorial problem: the enumeration of pairs of *amicable* permutations.

The writer [1] has defined "degenerate" EULERian numbers by means of

(1.18)
$$\frac{1-x}{1-x(1+\lambda z(1-x))^{\mu}} = 1 + \sum_{n=1}^{+\infty} \frac{z^n}{n!} \sum_{k=1}^n A_{n,k}(\lambda) x^k,$$

where $\lambda \mu = 1$. This suggests that we put

(1.19)
$$\frac{1-x}{1-x(1+\lambda z)^{\mu}} = 1 + x \sum_{n=1}^{+\infty} \frac{z^n}{n!} H_n(\lambda, x) \qquad (\lambda \mu = 1).$$

It is then easy to show that

(1.20)
$$xH_n\left(-\lambda,\frac{1}{x}\right) = (-1)^n H_n(\lambda, x)$$

and

(1.21)
$$(x-y)(H(\lambda, x) + H(\lambda, y))^n = x(1-y)H_n(\lambda, x) - y(1-x)H_n(\lambda, y) \quad (x \neq y).$$

Note that the notation in (1.18) and (1.19) is somewhat different from that in the EULERian case.

In view of (1.21) we consider the problem of characterizing sequences $\{f_n(\lambda, x)\}$ such that $f_0(\lambda, x) = 1$ and

(1.22)
$$(x-y)(f(\lambda, x)+f(\lambda, y))^n = x(1-y)f_n(\lambda, x) - y(1-x)f_n(\lambda, y)$$
 $(x \neq y).$

The results are similar to those in the simpler case (1.10). In particular we show that

(1.23)
$$\sum_{n=0}^{+\infty} f_n(\lambda, x) \frac{z^n}{n!} = \frac{1-x}{1-xC(\lambda, z)},$$

where $C(\lambda, z)$ is a power series in z, $C(\lambda, 0) = 1$. Moreover $f_n(\lambda, x)$ satisfies

(1.24)
$$xf_n\left(-\lambda,\frac{1}{x}\right) = (-1)^n f_n(\lambda, x)$$

if and only if

(1.25)
$$C(\lambda, z)C(-\lambda, -z) = 1$$

or equivalently

(1.26)
$$C(\lambda, z) = \Phi(\lambda, z)/\Phi(-\lambda, -z).$$

It can be verified that (1.23) implies the symmetrical generating function (compare (1.17))

(1.27)
$$\sum_{r,s=0}^{+\infty} C(r,s,\lambda) \frac{x^r y^s}{(r+s+1)!} = \frac{\Phi(-\lambda,x-y) - \Phi(\lambda,y-x)}{x\Phi(\lambda,y-x) - y\Phi(-\lambda,x-y)},$$

6 Publikacije Elektrotehničkog fakulteta

where
$$f_n(\lambda, x) = (1 - x)^{-n} \sum_{k=1}^{n} C_{n,k}(\lambda) x^k \ (n \ge 1)$$
 and
 $C(r, s, \lambda) = C_{r+s+1,r+1}(\lambda) = C_{r+s+1,s+1}(-\lambda) = C(s, r, -\lambda).$

2. We show first that $H_n(x)$ is characterized by (1.9). More precisely let $\{f_n(x)\}$ be a sequence of functions, $f_0(x) = 1$, that satisfy

(2.1)
$$(x-1)(f_{n+1}(x)+f_n(x)) = x(f(x)+f(x))^n \quad (n=0, 1, 2, ...).$$

Put

(2.2)
$$F = F(x, z) = \sum_{n=0}^{+\infty} f_n(x) \frac{z^n}{n!}.$$

Then

$$\sum_{n=0}^{+\infty} (f(x)+f(x))^n \frac{z^n}{n!} = \sum_{r,s=0}^{+\infty} f_r(x) f_s(x) \frac{z^{r+s}}{r!\,s!} = F^2.$$

On the other hand

$$\sum_{n=0}^{+\infty} \left(f_{n+1}(x) + f_n(x) \right) \frac{z^n}{n!} = F_z + F \qquad \left(F_z \equiv \frac{\partial F}{\partial z} \right).$$

Thus (2.1) gives

(2.3)

$$(x-1)(F_z+F)=xF^2.$$

Solving the differential equation (2.3) we get $F(x, z) = \frac{1-x}{C(x)e^z - x}$, where C(x) is some function of x. Since $F(x, 0) = f_0(x) = 1$, it follows that C(x) = 1. Hence

$$F(x, z) = \frac{1-x}{e^z - x}, f_n(x) = H_n(x).$$

This proves the following theorem.

Theorem 1. Let $\{f_n(x)\}$ be a sequence of functions, $f_0(x) = 1$, that satisfy

$$(2.4) \qquad (x-1)\left(f_{n+1}(x)+f_n(x)\right)=x\left(f(x)+f(x)\right)^n \qquad (n=0,\,1,\,2,\,\ldots).$$

Then

(2.5)
$$f_n(x) = H_n(x)$$
 $(n = 0, 1, 2, ...).$

We now consider a sequence of functions $\{f_n(x)\}$ that satisfy

(2.6)
$$(y-x)(f(x)+f(y))^n = (1-x)f_n(y) - (1-y)f_n(x)$$
 $(x \neq y)$

for n = 0, 1, 2, ... Note that for n = 0, (2.6) gives $f_0(x) = 1$.

As in the previous case we define F = F(x, z) by means of (2.2). Then it is easily verified that (2.6) implies

$$(2.7) (y-x) F(x, z) F(y, z) = (1-x) F(y, z) - (1-y) F(x, z).$$

Divide both sides of (2.7) by y - x and let $y \rightarrow x$. We find that

(2.8)
$$F^{2}(x, z) = (1-x)F_{x}(x, z) + F(x, z).$$

It follows from (2.8) that

(2.9)
$$F(x, z) = \frac{1-x}{C(z)-x},$$

where C(z) is now a function of z. Since $F(x, 0) = f_0(x) = 1$, it is clear that C(0) = 1.

Substituting from (2.9) in (2.7) we get

$$\frac{(y-x)(1-x)(1-y)}{(C(z)-x)(C(z)-y)} = \frac{(1-x)(1-y)}{C(z)-y} - \frac{(1-x)(1-y)}{C(z)-x},$$

an identity in x, y and C(z). Hence C(z) is arbitrary except for C(0) = 1. This completes the proof of the following theorem.

Theorem 2. Let
$$\{f_n(x)\}$$
 be a sequence of functions that satisfy
(2.10) $(y-x)(f(x)+f(y))^n = (1-x)f_n(y) - (1-y)f_n(x)$ $(y \neq x)$

for n = 0, 1, 2, ... Then

(2.11)
$$\sum_{n=0}^{+\infty} f_n(x) \frac{z^n}{n!} = \frac{1-x}{C(z)-x},$$

where C(z) is an arbitrary function of z, C(0) = 1. Conversely, (2.11) implies (2.10).

We remark that it follows from (2.10) that

(2.12)
$$(f(x) + f(y) + f(z))^n = \frac{(1-y)(1-z)}{(x-y)(x-z)} f_n(x) + \frac{(1-z)(1-x)}{(y-z)(y-x)} f_n(y) + \frac{(1-x)(1-y)}{(z-x)(z-y)} f_n(z)$$

and similarly for a larger number of variables. The general formula of this kind can be proved most easily by expressing the product

$$\frac{1-x_1}{C(z)-x_1} \quad \frac{1-x_2}{C(z)-x_2} \cdots \frac{1-x_n}{C(z)-x_n}$$

as a sum of partial fractions.

3. We shall now assume that C(z) is analytic in the neighborhood of the origin:

(3.1)
$$C(z) = \sum_{n=0}^{+\infty} c_n \frac{z^n}{n!}, \ c_0 = 1.$$

Put

(3.2)
$$(C(z)-1)^k = \sum_{n=k}^{+\infty} c_n^{(k)} \frac{z^n}{n!} \qquad (k=1, 2, \ldots).$$

¢

L. Carlitz

Then

$$\frac{1-x}{C(z)-x} = \frac{1-x}{(C(z)-1)+(1-x)} = 1 + \sum_{k=1}^{+\infty} (x-1)^{-k} (C(z)-1)^k$$
$$= 1 + \sum_{k=1}^{+\infty} (x-1)^{-k} \sum_{n=k}^{+\infty} c_n^{(k)} \frac{z^n}{n!} = 1 + \sum_{n=1}^{+\infty} \frac{z^n}{n!} \sum_{k=1}^n c_n^{(k)} (x-1)^{-k}$$
$$= 1 + \sum_{n=1}^{+\infty} (x-1)^{-n} \frac{z^n}{n!} \sum_{k=1}^n c_n^{(k)} (x-1)^{n-k}.$$

Comparison with (2.11) gives

(3.3)
$$f_n(x) = (x-1)^{-n} \sum_{k=1}^n c_n^{(k)} (x-1)^{n-k} \qquad (n=1, 2, \ldots).$$

Hence, for $n \ge 1$, $f_n(x)$ is a rational function of x. We may put

(3.4)
$$f_n(x) = \frac{C_n(x)}{(x-1)^n}, \quad C_n(x) = \sum_{k=1}^n C_{n,k} x^{k-1} \qquad (n \ge 1).$$

Note that

(3.5)
$$C_{nn} = c_n^{(1)} = c_n.$$

In view of (1.5) it is of interest to determine whether $C_{n,k}$ satisfies the symmetry relation

(3.6)
$$C_{n,k} = C_{n,n-k+1}$$
 $(1 \le k \le n)$

for appropriate C(z). The relation

(3.7)
$$f_n(-x) = (-1)^n x f_n(x)$$
 $(n \ge 1)$

is equivalent to (3.6).

Making use of (3.7), we have

$$F(x^{-1}, z) = 1 + x \sum_{n=1}^{+\infty} (-1)^n f_n(x) \frac{z^n}{n!} = 1 + x \left(F(x, -z) - 1 \right) \right),$$

so that

(3.8)
$$F(x^{-1}, z) = 1 - x + xF(x, -z).$$

Thus by (2.11)

$$\frac{1-x^{-1}}{C(z)-x^{-1}} = 1-x+\frac{x(1-x)}{C(-z)-x}.$$

Simmplifying, we get

(3.9)
$$C(z) C(-z) = 1.$$

84

The steps are reversible and therefore (3.9) is a necessary and sufficient condition that (3.6) is satisfied.

The condition (3.9) is obviously satisfied by $C(z) = e^{z}$. More generally it is satisfied if

$$(3.10) C(z) = \frac{\Phi(z)}{\Phi(-z)}$$

(3.11)
$$\Phi(z) = 1 + \sum_{n=1}^{+\infty} d_n \frac{z^n}{n!},$$

is any function analytic about the origin such that $\Phi(0) = 1$.

Conversely (3.9) implies (3.10). To prove this put $C(z) = E(z) + E_1(z)$, where E(z) is even and $E_1(z)$ is odd. Then

$$C(z) C(-z) = (E(z) + E_1(z)) (E(z) - E_1(z)),$$

so that, by (3.9),

(3.12)
$$E^{2}(z) - E_{1}^{2}(z) = 1, E_{1}(z) = \sqrt{E^{2}(z) - 1}.$$

Consider

$$\Phi(z) = \Phi_0(z) \left(1 + \sqrt{\frac{E(z) - 1}{E(z) + 1}}\right) = \Phi_0(z) \frac{\sqrt{E(z) + 1} + \sqrt{E(z) - 1}}{\sqrt{E(z) + 1}}$$

where $\Phi_0(z)$ is an arbitrary even function, $\Phi_0(0) = 1$. Then

$$\Phi(-z) = \Phi_0(z) \frac{\sqrt{E(z)+1} - \sqrt{E(z)-1}}{\sqrt{E(z)+1}},$$

$$\frac{\Phi(z)}{\Phi(-z)} = \frac{\sqrt{E(z)+1} + \sqrt{E(z)-1}}{\sqrt{E(z)+1} - \sqrt{E(z)-1}} = \frac{1}{2} (\sqrt{E(z)+1} + \sqrt{E(z)-1})^2$$

$$= E(z) + \sqrt{E^2(z)-1} = C(z).$$

This completes the proof of

Theorem 3. Let the sequence $\{f_n(x)\}_1^{+\infty}$ satisfy (2.10). It will also satisfy (3.13) $f_n(-x) = (-1)^n x f_n(x)$ (n = 1, 2, ...)

if and only if the coefficient $C_{n,k}$ satisfies

(3.14)
$$C_{n,k} = C_{n,n-k+1}$$
 $(1 \le k \le n).$

The condition (3.13) is satisfied if and only if $C(z) = 1 + \sum_{n=1}^{+\infty} c_n \frac{z^n}{n!}$ satisfies

(3.15)
$$C(z)C(-z) = 1$$

or equivalently

(3.16)
$$C(z) = \frac{\Phi(z)}{\Phi(-z)}, \quad \Phi(z) = 1 + \sum_{n=1}^{+\infty} d_n \frac{z^n}{n!}.$$

If we replace z by (x-1)z the generating function becomes

(3.17)
$$\sum_{r,s=0}^{+\infty} C(r,s) \frac{x^r y^s}{(r+s+1)!} = \frac{\Phi(x-y) - \Phi(y-x)}{x \Phi(y-x) - y \Phi(x-y)},$$

where $C(r, s) = C_{r+s+1, r+1} = C_{r+s+1, s+1} = C(s, r)$. We remark that if $G = G(x, y) = \frac{\Phi(x-y) - \Phi(y-x)}{x \Phi(y-x) - y \Phi(x-y)}$, it can be veri-

fied that

$$(3.18) G_x + G_y = G^2.$$

Also

$$G + xG_x + yG_y = (x - y)^2 \left(\Phi (x - y) \Phi' (y - x) + \Phi (y - x) \Phi' (x - y) \right),$$

1 + (x + y) G + xyG² = (x - y)² $\Phi (x - y) \Phi (y - x).$

It follows that

$$\sum_{r,s=0}^{+\infty} C(r,s) \frac{x^r y^s}{(r+s)!} = \frac{(x-y)^2 \left(\Phi(x-y) \Phi'(y-x) + \Phi(y-x) \Phi'(x-y)\right)}{(x \Phi(y-x) - y \Phi(x-y))^2}$$

Only in the EULERian case (C(r, s) = A(r, s)) do we have

$$\sum_{s=0}^{+\infty} C(r, s) \frac{x^r y^s}{(r+s)!} = (1 + xG(x, y)) (1 + yG(x, y)).$$

It follows from (3.17) that

r

$$\sum_{r,s=0}^{+\infty} C(r,s) \frac{x^{r+s}}{(r+s+1)!} = \frac{2\Phi'(0)}{1-2x\Phi'(0)} = \frac{c_1}{1-c_1x},$$

. so that $\sum_{r+s+n} C(r, s) = c_1^{n+1} (n+1)!$ or, what is the same,

(3.20)
$$\sum_{k=1}^{n} C_{n.k} = c_1^{n} n!$$

4. We now consider the "degenerate" EULERian number $A_{n,k}(\lambda)$ defined by

(4.1)
$$\frac{1-x}{1-x(1+\lambda z(1-x))^{\mu}} = 1 + \sum_{n=1}^{+\infty} \frac{z^n}{n!} \sum_{k=1}^n A_{n,k}(\lambda) x^k \qquad (\lambda \mu = 1).$$

It follows that $A_{n,k}(\lambda)$ is a polynomial in λ . Put

$$xH_n(\lambda, x) = (1-x)^{-n} \sum_{k=1}^n A_{n,k}(\lambda) x^k \qquad (n \ge 1),$$

so that (4.1) becomes

(4.2)
$$\frac{1-x}{1-x(1+\lambda z)^{\mu}} = \sum_{n=0}^{+\infty} \frac{z^n}{n!} H_n(\lambda, x).$$

It follows from (4.2) that $H_n(\lambda, x)$ satisfies

(4.3) $x(1-y) H_n(\lambda, x) - y(1-x) H_n(\lambda, y) = (x-y) (H(\lambda, x) + H(\lambda, y))^n$ $(x \neq y)$ where $H_0(\lambda, x) = 1$. Differentiation of (4.2) with respect to z yields

$$x(1-x)(1+\lambda x)\sum_{n=0}^{+\infty}\frac{z^n}{n!}H_{n+1}(\lambda) = \left(\frac{1-x}{1-x(1+\lambda z)^{\mu}}\right)^2 - \frac{(1-x)^2}{1-x(1+\lambda z)^{\mu}}$$

Comparing coefficients of z^n , we get

(4.4)
$$(1-x) H_{n+1}(\lambda, x) + (1-x) (1+n\lambda) H_n(\lambda, x) = (H(\lambda, x) + H(\lambda, x))^n.$$

To get the quasi-symmetry property we replace λ by $-\lambda$ and x by x^{-1} in (4.2). This gives

(4.5)
$$xH_n\left(-\lambda, \frac{1}{x}\right) = (-1)^n H_n(\lambda, x) \qquad (n \ge 1).$$

Since $H_n(\lambda, x) = (1-x)^{-n} \sum_{k=1}^n A_{n,k}(\lambda) x^k$, (4.5) is equivalent to

(4.6)
$$A_{n,n-k+1}(\lambda) = A_{n,k}(-\lambda) \qquad (1 \le k \le n).$$

Now let $\{f_n(\lambda, x)\}_0^{+\infty}$ be a sequence such that $f_0(\lambda, x) = 1$ and

(4.7)
$$(1-x)f_{n+1}(\lambda, x) + (1-x)(1+n\lambda)f_n(\lambda, x) = (f(\lambda, x) + f(\lambda, x))^n \qquad (n=0, 1, 2, ...).$$

Put

(4.8)
$$F \equiv F(\lambda, x, z) = \sum_{n=0}^{+\infty} f_n(\lambda, x) \frac{z^n}{n!}.$$

Since $F_z(\lambda, x, z) = \sum_{n=0}^{+\infty} f_{n+1}(\lambda, x) \frac{z^n}{n!}$ and $zF_z(\lambda, x, z) = \sum_{n=0}^{+\infty} nf_n(\lambda, x) \frac{z^n}{n!}$, it follows from (4.7) that

(4.9)
$$(1-x)(1+\lambda z)F_z = F^2 - (1-x)F.$$

The general solution of (4.9) is

$$\frac{F-1+x}{F} = K(1+\lambda z)^{\mu}.$$

Since $F(\lambda, x, 0) = 1$, K = x and therefore

$$F(\lambda, x, z) = \frac{1-x}{1-x(1+\lambda z)^{\mu}}.$$

We may state:

Theorem 4. Let $\{f_n(\lambda, x)\}_0^{+\infty}$ denote a sequence such that $f_0(\lambda, x) = 1$ and $(1-x)f_{n+1}(\lambda, z) + (1-x)(1+n\lambda)f_n(\lambda, x) = f(\lambda, x) + f(\lambda, x) n \quad (n = 0, 1, 2, ...).$

Then

$$f_n(\lambda x) = H_n(\lambda, x)$$
 (n = 0 = 0, 1, 2, ...).

We now consider a sequence $\{f_n(\lambda, x)^+_0$ such that

(4.10)
$$x(1-y)f_{n}(\lambda, x) - y(1-x)f_{n}(\lambda, y) = (x-y)(f(\lambda, x) + f(\lambda, y))^{n}(x \neq y); \quad n = 0, 1, 2, ...$$

Again define $F(\lambda, x, z)$ by (4.8). Then (4.10) implies

(4.11)
$$x(1-y) F(\lambda, x, z) - y(1-x) F(\lambda, y, z) = (x-y) F(\lambda, x, z) F(\lambda, y, z).$$

Divide both sides of (4.11) by x-y and let $y \rightarrow x$. We get

(4.12)
$$F^{2}(\lambda, x, z) = F(\lambda, x, z) + x(1-x)F_{x}(\lambda, x, z)$$

The general solution of (4.12) is

(4.13)
$$F(\lambda, x, z) = \frac{1-x}{1-xC(\lambda, z)}$$

Since $F(\lambda, x, 0) = 1$, $C(\lambda, 0) = 1$.

This proves

Theorem 5. Let $\{f_n(\lambda, x)\}_{0}^{+\infty}$ denote a sequence such that $f_0(\lambda, x) = 1$ and

$$x (1-y) f_n(\lambda, x) - y (1-x) f_n(\lambda, y) = (x-y) (f(\lambda, x) + f(\lambda, y))^n \quad (x \neq y; n = 0, 1, 2, ...).$$

Then

(4.14)
$$\sum_{n=0}^{+\infty} f_n(\lambda, x) \frac{z^n}{n!} = \frac{1-x}{1-xC(\lambda, z)},$$

where

(4.15)
$$C(\lambda, z) = 1 + \sum_{n=1}^{\infty} c_n(\lambda) z^n.$$

5. We now require that $f_n(\lambda, x)$ satisfy

(5.1)
$$xf_n\left(-\lambda, \frac{1}{x}\right) = (-1)^n f_n(\lambda, x) \qquad (n \ge 1).$$

It follows that

$$F(\lambda, x, z) = 1 + x \sum_{n=1}^{+\infty} (-1)^n f_n\left(-\lambda, \frac{1}{x}\right) \frac{z^n}{n!} = 1 - x + x \sum_{n=0}^{+\infty} (-1)^n f_n\left(-\lambda, \frac{1}{x}\right) \frac{z^n}{n!},$$

so that

(5.2)
$$F(\lambda, x, z) = 1 - x + x F\left(-\lambda, \frac{1}{x}, -z\right).$$

Hence by (4.14) and (5.2),

$$\frac{1-x}{1-xC(\lambda,z)} = 1-x+\frac{x(1-x^{-1})}{1-x^{-1}C(-\lambda,-z)}.$$

Simplifying, we get

(5.3)
$$C(\lambda, z)C(-\lambda, -z) = 1.$$

We shall show that (5.3) is equivalent to

(5.4)
$$C(\lambda, z) = \frac{\Phi(\lambda, z)}{\Phi(-\lambda, -z)}.$$

It follows from (5.3) that

(5.5)
$$\log C(\lambda, z) + \log C(-\lambda, -z) = 0.$$

Thus we may put $\log C(\lambda, z) = \sum_{r=0}^{+\infty} \sum_{s=1}^{+\infty} c_{rs} \lambda^r z^s$; by (4.15) the lower limit.

for $s \ge 1$. Hence, by (5.5), $\sum_{r,s} (1 + (-1)^{r+s}) c_{rs} \lambda^r z^s = 0$, so that

(5.6)
$$c_{rs} = 0 \ (r + s \equiv 0 \ (mod \ 2))$$

Let $P(\lambda, z)$ denote a power series in λ and z: $P(\lambda, z) = \sum_{r,s} p_{rs} \lambda^r z^s$ and consider the functional equation

(5.7)
$$P(\lambda, z) - P(-\lambda, z) = \log C(\lambda, z).$$

This is equivalent to

(5.8)
$$(1-(-1)^{r+s})p_{rs}=c_{rs}.$$

For $r+s\equiv 0 \pmod{2}$, (5.8) is satisfied automatically because of (5.6); for $r+s\equiv 1 \pmod{2}$, p_{rs} is uniquely determined by (5.8). Hence, for $\Phi(\lambda, z) = \exp P(\lambda, z)$, we get (5.4).

The series $\Phi(\lambda, z)$ is of course not uniquely determined; the above proof indicates that $\Phi(\lambda, z)$ may be multipled by an arbitrary series of the form $\sum_{r+s=0}^{2} d_{rs} \lambda^r z^s$.

Summing up, we state

Theorem 6. Let the sequence $\{f_n(\lambda, x)\}_1^{+\infty}$ satisfy (4.10). It will also satisfy

(5.9)
$$xf_n\left(-\lambda, \frac{1}{x}\right) = (-1)^n f_n(\lambda, x) \qquad (n = 1, 2, ...)$$

if and only if

$$(5.10) C(\lambda, z) C(-\lambda, -z) = 1$$

or equivalently

(5.11)
$$C(\lambda, z) = \Phi(\lambda, z)/\Phi(-\lambda, -z),$$

where $\Phi(\lambda, z)$ may be assumed to be of the form $\Phi(\lambda, z) = \sum_{r,s} a_{rs} \lambda^r z^s$ and

$$a_{rs} = 0 \ (r+s > 0; \ r+s \equiv 0 \ (\text{mod } 2))$$

As an example, for $C(\lambda, z) = (1 + \lambda z)^{\mu}$, we may take $\Phi(\lambda, z) = (1 + \lambda z)^{\mu/2}$, although this choice of $\Phi(\lambda, z)$ does not satisfy (5.12).

By (4.14) and (5.11) we have

(5.13)
$$1 + \sum_{n=1}^{+\infty} \frac{z^n}{n!} \sum_{k=1}^n C_{n,k}(\lambda) x^k = \frac{1-x}{1-xC(\lambda, z-xz)}$$
$$= \frac{(1-x)\Phi(-\lambda, xz-x)}{\Phi(-\lambda, xz-x)-x\Phi(\lambda, z-xz)},$$

where

$$(1-x)^n f_n(\lambda, x) = \sum_{k=1}^n C_{n,k}(\lambda) x^k.$$

Replacing x by xz^{-1} in (5.13) we get after a little manipulation

$$(5.14) \qquad \sum_{r,s=0}^{+\infty} C(r, s, \lambda) \frac{x^r y^s}{(r+s+1)!} = \frac{\Phi(\lambda, y-x) - \Phi(-\lambda, x-y)}{y \Phi(-\lambda, x-y) - x \Phi(\lambda, y-x)},$$

where

(5.15)
$$C(r, s, \lambda) = C_{r+s+1, r+1}(\lambda) = C_{r+s+1, s+1}(-\lambda) = C(s, r, -\lambda).$$

It is evident frum (4.2) that $H_n(\lambda, x)$ is a polynomial in λ of degre $\leq n$. More precisely it follows from

$$H_n(\lambda, x) = (1-x)^{-n} A_n(\lambda, x), \qquad A_n(\lambda, x) = \sum_{k=1}^n A_{n,k}(\lambda) x^k,$$

that $A_n(\lambda, x)$ is a polynomial of degree $\leq n$ in x and of degree $\leq n-1$ in λ . Moreover it is proved in [1] that $A_{n,k}(\lambda)$ is a polynomial in λ of degree n-1 for $k=1,\ldots,n$.

In the more general case of $f_n(\lambda, x)$, we can again assert that

$$(1-x)^n f_n(\lambda, x)$$

is a polynomial of degree $\leq n$ in x. As for the parameter λ , if we put

(5.16)
$$C(\lambda, z) = 1 + \sum_{n=1}^{+\infty} c_n(\lambda) \frac{z^n}{n!}$$

and assume that $c_n(\lambda)$ is a polynomial of degree $\leq n-1$ in λ , then this is also true of $C_{n,k}(\lambda)$. Also it follows from (4.14) and (5.16) that

 $C_{n,1}(\lambda) = c_n(\lambda).$

Hence, if (5.9) is assumed to hold, we get

$$C_{n,n}(\lambda) = C_{n,1}(-\lambda) = c_n(-\lambda).$$

REFERENCES

- 1. L. CARLITZ: Degenerate Bernoulli, Stirling and Eulerian numbers. Utilitas Mathematica, to oppear.
- 2. L. CARLITZ: Eulerian numbers and polynomials. Math. Mag. 32 (1959), 247-260.
- 3. L. CARLITZ: The product of two Eulerian polynomials. Math. Mag. 37 (1963), 37-41.
- 4. L. CARLITZ and RICHARD SCOVILLE: Generalized Eulerian numbers: combinatorial applications. J. für die reine und angewandte Math. 265 (1974), 110-137.
- 5. L. CARLITZ, RICHARD SCOVILLE and THERESA VAUGHAN: Enumeration of pairs of permutations. Discrete Mathematics 14 (1976), 215-239.
- G. FROBENIUS: Über die Bernoullischen Zahlen und die Eulerschen Polynome. Gesammelte Abhandlungen. Berlin—Heidelberg—New York, 1968, Band III, 440—478.
- 7. J. RIORDAN: An Introduction to Combinatorial Analysis. New York, 1958.

Department of Mathematics Duke University Durham, N.C. U.S.A.