611. SOME REMARKS ON THE EULERIAN FUNCTION

L. Carlitz

To Professor D. S. Mitrinović on his seventieth birthday.

1. The Eulerian function $H_{n}(x)$ can be defined by

$$
\begin{equation*}
\frac{1-x}{e^{z-x}}=\sum_{n=0}^{+\infty} H_{n}(x) \frac{z^{n}}{n!} \quad(x \neq 1) \tag{1.1}
\end{equation*}
$$

It follows from (1.1) that $H_{n}(x)$ is a rational function of x :

$$
\begin{equation*}
H_{n}(x)=\frac{A_{n}(x)}{(x-1)^{n}}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(x)=\sum_{k=1}^{n} A_{n, k} x^{k-1} \quad(n \geqq 1) . \tag{1.3}
\end{equation*}
$$

The $A_{n, k}$ are called Eulerian numbers. They are positive integers that: satisfy the recurrence

$$
\begin{equation*}
A_{n+1, k}=(n-k+2) A_{n, k-1}+k A_{n, k} \tag{1.4}
\end{equation*}
$$

and the symmetry relation

$$
\begin{equation*}
A_{n, k}=A_{n, n-k+1} \quad(1 \leqq k \leqq n) . \tag{1.5}
\end{equation*}
$$

The function $H_{n}(x)$ satisfies

$$
\begin{equation*}
H_{n}\left(x^{-1}\right)=(-1)^{n} x H_{n}(x) \quad(n \geqq 1) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
x H_{n}(x)=\sum_{j=0}^{n}\binom{n}{j} H_{j}(x) \quad(n \geqq 1) . \tag{1.7}
\end{equation*}
$$

It follows from (1.2) and (1.3) that (1.5) and (1.6) are equivalent.
Frobenius [6] hes discussed properties of $H_{n}(x)$ at length with particular stress on arithmetic properties. For briefer treatments see [2] and [7].

The writer [3] has proved that

$$
\begin{equation*}
(y-x)(H(x)+H(y))^{n}=(1-x) H_{n}(y)-(1-y) H_{n}(x) \quad(x \neq y), \tag{1.8}
\end{equation*}
$$

where $(H(x)+H(y))^{n}=\sum_{j=0}^{n}\binom{n}{j} H_{j}(x) H_{n-j}(y)$. For $x=y$, we have

$$
\begin{equation*}
(x-1)\left(H_{n+1}(x)+H_{n}(x)\right)=x(H(x)+H(x))^{n} \quad(n \geqq 0) . \tag{1.9}
\end{equation*}
$$

We shall show that (1.9) characterizes $H_{n}(x)$. However this is not true of (1.8). We shall show that if $\left.\left\{f_{n}(x)\right)\right\}$ is a sequence that satisfies

$$
\begin{equation*}
(y-x)(f(x)+f(y))^{n}=(1-x) f_{n}(y)-(1-y) f_{n}(x) \quad(n \geqq 0) \tag{1.10}
\end{equation*}
$$

and $F=F(x, z)=\sum_{n=0}^{+\infty} f_{n}(x) \frac{z^{n}}{n!} \quad\left(f_{0}(x)=1\right)$ then

$$
\begin{equation*}
F(x, z)=\frac{1-x}{C(z)-x}, \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
C(z)=\sum_{n=0}^{+\infty} c_{n} \frac{z^{n}}{n!} \quad\left(c_{0}=1\right) \tag{1.12}
\end{equation*}
$$

It follows from (1.11) and (1.12) that

$$
f_{n}(x)=\frac{C_{n}(x)}{(x-1)^{n}}, C_{n}(x)=\sum_{k=1}^{n} C_{n, k} x^{k-1} \quad(n \geqq 1)
$$

where the coefficients $C_{n, k}$ are determined by $C(z)$. Moreover, $C_{n, k}$ satisfies the symmetry condition

$$
\begin{equation*}
C_{n, k}=C_{n, n-k+1} \quad(1 \leqq k \leqq n) \tag{1.13}
\end{equation*}
$$

if and only if $C(z)$ satisfies

$$
\begin{equation*}
C(z) C(-z)=1 . \tag{1.14}
\end{equation*}
$$

This condition is equivalent to

$$
\begin{equation*}
C(z)=\frac{\Phi(z)}{\Phi(-z)}, \Phi(z)=1+\sum_{n=1}^{+\infty} d_{n} \frac{z^{n}}{n!} . \tag{1.15}
\end{equation*}
$$

In the Eulerian case, if we put [4]:

$$
A(r, s)=A_{r+s+1, r+1}=A_{r+s+1, s+1}=A(s, r),
$$

the generating function (1.1) becomes

$$
\begin{equation*}
\sum_{r, s=0}^{+\infty} A(r, s) \frac{x^{r} y^{s}}{(r+s+1)!}=\frac{e^{x}-e^{y}}{x e^{y}-y e^{x}} . \tag{1.16}
\end{equation*}
$$

Similarly, if we put $C(r, s)=C_{r+s+1, r+1}=C_{r+s+1, s+1}=C(s, r)$, the generating function (1.11) becomes

$$
\begin{equation*}
\sum_{r, s=0}^{+\infty} C(r, s) \frac{x^{r} y^{s}}{(r+s+1)!}=\frac{\Phi(x-y)-\Phi(y-x)}{x \Phi(y-x)-y \Phi(y-x)} . \tag{1.17}
\end{equation*}
$$

We remark that the functional equation (1.14) as well as the generating function (1.17) have occurred in [5] in connection with the following combinatorial problem: the enumeration of pairs of amicable permutations.

The writer [1] has defined ,,degenerate" Eulerian numbers by means of

$$
\begin{equation*}
\frac{1-x}{1-x(1+\lambda z(1-x))^{\mu}}=1+\sum_{n=1}^{+\infty} \frac{z^{n}}{n!} \sum_{k=1}^{n} A_{n, k}(\lambda) x^{k}, \tag{1.18}
\end{equation*}
$$

where $\lambda \mu=1$. This suggests that we put

$$
\begin{equation*}
\frac{1-x}{1-x(1+\lambda z)^{\mu}}=1+x \sum_{n=1}^{+\infty} \frac{z^{n}}{n!} H_{n}(\lambda, x) \quad(\lambda \mu=1) . \tag{1.19}
\end{equation*}
$$

It is then easy to show that

$$
\begin{equation*}
x H_{n}\left(-\lambda, \frac{1}{x}\right)=(-1)^{n} H_{n}(\lambda, x) \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
(x-y)(H(\lambda, x)+H(\lambda, y))^{n}=x(1-y) H_{n}(\lambda, x)-y(1-x) H_{n}(\lambda, y) \quad(x \neq y) \tag{1.21}
\end{equation*}
$$

Note that the notation in (1.18) and (1.19) is somewhat different from that in the Eulerian case.

In view of (1.21) we consider the problem of characterizing sequences $\left\{f_{n}(\lambda, x)\right\}$ sush that $f_{0}(\lambda, x)=1$ and
(1.22) $(x-y)(f(\lambda, x)+f(\lambda, y))^{n}=x(1-y) f_{n}(\lambda, x)-y(1-x) f_{n}(\lambda, y) \quad(x \neq y)$.

The results are similar to those in the simpler case (1.10). In particular we show that

$$
\begin{equation*}
\sum_{n=0}^{+\infty} f_{n}(\lambda, x) \frac{z^{n}}{n!}=\frac{1-x}{1-x C(\lambda, z)}, \tag{1.23}
\end{equation*}
$$

where $C(\lambda, z)$ is a power series in $z, C(\lambda, 0)=1$. Moreover $f_{n}(\lambda, x)$ satisfies

$$
\begin{equation*}
x f_{n}\left(-\lambda, \frac{1}{x}\right)=(-1)^{n} f_{n}(\lambda, x) \tag{1.24}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
C(\lambda, z) C(-\lambda,-z)=1 \tag{1.25}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
C(\lambda, z)=\Phi(\lambda, z) / \Phi(-\lambda,-z) \tag{1.26}
\end{equation*}
$$

It can be verified that (1.23) implies the symmetrical generating function (compare (1.17))

$$
\begin{equation*}
\sum_{r, s=0}^{+\infty} C(r, s, \lambda) \frac{x^{r} y^{s}}{(r+s+1)!}=\frac{\Phi(-\lambda, x-y)-\Phi(\lambda, y-x)}{x \Phi(\lambda, y-x)-y \Phi(-\lambda, x-y)}, \tag{1.27}
\end{equation*}
$$

where $f_{n}(\lambda, x)=(1-x)^{-n} \sum_{k=1}^{n} C_{n, k}(\lambda) x^{k}(n \geqq 1)$ and

$$
C(r, s, \lambda)=C_{r+s+1, r+1}(\lambda)=C_{r+s+1, s+1}(-\lambda)=C(s, r,-\lambda) .
$$

2. We show first that $H_{n}(x)$ is characterized by (1.9). More precisely let $\left\{f_{n}(x)\right\}$ be a sequence of functions, $f_{0}(x)=1$, that satisfy

$$
\begin{equation*}
(x-1)\left(f_{n+1}(x)+f_{n}(x)\right)=x(f(x)+f(x))^{n} \quad(n=0,1,2, \ldots) . \tag{2.1}
\end{equation*}
$$

Put

$$
\begin{equation*}
F=F(x, z)=\sum_{n=0}^{+\infty} f_{n}(x) \frac{z^{n}}{n!} . \tag{2.2}
\end{equation*}
$$

Then

$$
\sum_{n=0}^{+\infty}(f(x)+f(x))^{n^{z^{n}}} \frac{n!}{n!}=\sum_{r, s=0}^{+\infty} f_{r}(x) f_{s}(x) \frac{z^{r+s}}{r!s!}=F^{2} .
$$

On the other hand

$$
\sum_{n=0}^{+\infty}\left(f_{n+1}(x)+f_{n}(x)\right) \frac{z^{n}}{n!}=F_{z}+F \quad\left(F_{z} \equiv \frac{\partial F}{\partial z}\right)
$$

Thus (2.1) gives

$$
\begin{equation*}
(x-1)\left(F_{z}+F\right)=x F^{2} . \tag{2.3}
\end{equation*}
$$

Solving the differential equation (2.3) we get $F(x, z)=\frac{1-x}{C(x) e^{2-x}}$, where $C(x)$ is some function of x. Since $F(x, 0)=f_{0}(x)=1$, it follows that $C(x)=1$. Hence

$$
F(x, z)=\frac{1-x}{e^{z}-x}, f_{n}(x)=H_{n}(x)
$$

This proves the following theorem.
Theorem 1. Let $\left\{f_{n}(x)\right\}$ be a sequence of functions, $f_{0}(x)=1$, that satisfy
(2.4) $\quad(x-1)\left(f_{n+1}(x)+f_{n}(x)\right)=x(f(x)+f(x))^{n} \quad(n=0,1,2, \ldots)$.

Then

$$
\begin{equation*}
f_{n}(x)=H_{n}(x) \quad(n=0,1,2, \ldots) . \tag{2.5}
\end{equation*}
$$

We now consider a sequence of functions $\left\{f_{n}(x)\right\}$ that satisfy

$$
\begin{equation*}
(y-x)(f(x)+f(y))^{n}=(1-x) f_{n}(y)-(1-y) f_{n}(x) \quad(x \neq y) \tag{2.6}
\end{equation*}
$$

for $n=0,1,2, \ldots$ Note that for $n=0,(2.6)$ gives $f_{0}(x)=1$.
As in the previous case we define $F=F(x, z)$ by means of (2.2). Then it is easily verified that (2.6) implies

$$
\begin{equation*}
(y-x) F(x, z) F(y, z)=(1-x) F(y, z)-(1-y) F(x, z) . \tag{2.7}
\end{equation*}
$$

Divide both sides of (2.7) by $y-x$ and let $y \rightarrow x$. We find that

$$
\begin{equation*}
F^{2}(x, z)=(1-x) F_{x}(x, z)+F(x, z) . \tag{2.8}
\end{equation*}
$$

It follows from (2.8) that

$$
\begin{equation*}
F(x, z)=\frac{1-x}{C(z)-x}, \tag{2.9}
\end{equation*}
$$

where $C(z)$ is now a function of z. Since $F(x, 0)=f_{0}(x)=1$, it is clear that $C(0)=1$.

Substituting from (2.9) in (2.7) we get

$$
\frac{(y-x)(1-x)(1-y)}{(C(z)-x)(C(z)-y)}=\frac{(1-x)(1-y)}{C(z)-y}-\frac{(1-x)(1-y)}{C(z)-x},
$$

an identity in x, y and $C(z)$. Hence $C(z)$ is arbitrary except for $C(0)=1$.
This completes the proof of the following theorem.
Theorem 2. Let $\left\{f_{n}(x)\right\}$ be a sequence of functions that satisfy

$$
\begin{equation*}
(y-x)(f(x)+f(y))^{n}=(1-x) f_{n}(y)-(1-y) f_{n}(x) \quad(y \neq x) \tag{2.10}
\end{equation*}
$$

for $n=0,1,2, \ldots$ Then

$$
\begin{equation*}
\sum_{n=0}^{+\infty} f_{n}(x) \frac{z^{n}}{n!}=\frac{1-x}{C(z)-x}, \tag{2.11}
\end{equation*}
$$

where $C(z)$ is an arbitrary function of $z, C(0)=1$. Conversely, (2.11) implies (2.10).

We remark that it follows from (2.10) that

$$
\begin{align*}
(f(x) & +f(y)+f(z))^{n} \tag{2.12}\\
& =\frac{(1-y)(1-z)}{(x-y)(x-z)} f_{n}(x)+\frac{(1-z)(1-x)}{(y-z)(y-x)} f_{n}(y)+\frac{(1-x)(1-y)}{(z-x)(z-y)} f_{n}(z)
\end{align*}
$$

and similarly for a larger number of variables. The general formula of this kind can be proved most easily by expressing the product

$$
\frac{1-x_{1}}{C(z)-x_{1}} \frac{1-x_{2}}{C(z)-x_{2}} \cdots \frac{1-x_{n}}{C(z)-x_{n}}
$$

as a sum of partial fractions.
3. We shall now assume that $C(z)$ is analytic in the neighborhood of the origin:

$$
\begin{equation*}
C(z)=\sum_{n=0}^{+\infty} c_{n} \frac{z^{n}}{n!}, c_{0}=1 \tag{3.1}
\end{equation*}
$$

Put

$$
\begin{equation*}
(C(z)-1)^{k}=\sum_{n=k}^{+\infty} c_{n}^{(k)} \frac{z^{n}}{n!} \quad(k=1,2, \ldots) \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{aligned}
\frac{1-x}{C(z)-x} & =\frac{1-x}{(C(z)-1)+(1-x)}=1+\sum_{k=1}^{+\infty}(x-1)^{-k}(C(z)-1)^{k} \\
& =1+\sum_{k=1}^{+\infty}(x-1)^{-k} \sum_{n=k}^{+\infty} c_{n}^{(k)} \frac{z^{n}}{n!}=1+\sum_{n=1}^{+\infty} \frac{z^{n}}{n!} \sum_{k=1}^{n} c_{n}^{(k)}(x-1)^{-k} \\
& =1+\sum_{n=1}^{+\infty}(x-1)^{-n} \frac{z^{n}}{n!} \sum_{k=1}^{n} c_{n}^{(k)}(x-1)^{n-k} .
\end{aligned}
$$

Comparison with (2.11) gives

$$
\begin{equation*}
f_{n}(x)=(x-1)^{-n} \sum_{k=1}^{n} c_{n}^{(k)}(x-1)^{n-k} \quad(n=1,2, \ldots) \tag{3.3}
\end{equation*}
$$

Hence, for $n \geqq 1, f_{n}(x)$ is a rational function of x. We may put

$$
\begin{equation*}
f_{n}(x)=\frac{C_{n}(x)}{(x-1)^{n}}, \quad C_{n}(x)=\sum_{k=1}^{n} C_{n, k} x^{k-1} \quad(n \geqq 1) \tag{3.4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
C_{n n}=c_{n}^{(1)}=c_{n} . \tag{3.5}
\end{equation*}
$$

In view of (1.5) it is of interest to determine whether $C_{n, k}$ satisfies the symmetry relation

$$
\begin{equation*}
C_{n, k}=C_{n, n-k+1} \quad(1 \leqq k \leqq n) \tag{3.6}
\end{equation*}
$$

for appropriate $C(z)$. The relation

$$
\begin{equation*}
f_{n}(-x)=(-1)^{n} x f_{n}(x) \quad(n \geqq 1) \tag{3.7}
\end{equation*}
$$

is equivalent to (3.6).
Making use of (3.7), we have

$$
\left.F\left(x^{-1}, z\right)=1+x \sum_{n=1}^{+\infty}(-1)^{n} f_{n}(x) \frac{z^{n}}{n!}=1+x(F(x,-z)-1)\right),
$$

so that

$$
\begin{equation*}
F\left(x^{-1}, z\right)=1-x+x F(x,-z) \tag{3.8}
\end{equation*}
$$

Thus by (2.11)

$$
\frac{1-x^{-1}}{C(z)-x^{-1}}=1-x+\frac{x(1-x)}{C(-z)-x} .
$$

Simmplifying, we get

$$
\begin{equation*}
C(z) C(-z)=1 . \tag{3.9}
\end{equation*}
$$

The steps are reversible and therefore (3.9) is a necessary and sufficient condition that (3.6) is satisfied.

The condition (3.9) is obviously satisfied by $C(z)=e^{z}$. More generally it is satisfied if

$$
\begin{equation*}
C(z)=\frac{\Phi(z)}{\Phi(-z)} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(z)=1+\sum_{n=1}^{+\infty} d_{n} \frac{z^{n}}{n!}, \tag{3.11}
\end{equation*}
$$

is any function analytic about the origin such that $\Phi(0)=1$.
Conversely (3.9) implies (3.10). To prove this put $C(z)=E(z)+E_{1}(z)$, where $E(z)$ is even and $E_{1}(z)$ is odd. Then

$$
C(z) C(-z)=\left(E(z)+E_{1}(z)\right)\left(E(z)-E_{1}(z)\right)
$$

so that, by (3.9),

$$
\begin{equation*}
E^{2}(z)-E_{1}^{2}(z)=1, \quad E_{1}(z)=\sqrt{E^{2}(z)-1} \tag{3.12}
\end{equation*}
$$

Consider

$$
\Phi(z)=\Phi_{0}(z)\left(1+\sqrt{\frac{E(z)-1}{E(z)+1}}\right)=\Phi_{0}(z) \frac{\sqrt{E(z)+1}+\sqrt{E(z)-1}}{\sqrt{E(z)+1}}
$$

where $\Phi_{0}(z)$ is an arbitrary even function, $\Phi_{0}(0)=1$. Then

$$
\begin{aligned}
\Phi(-z) & =\Phi_{0}(z) \frac{\sqrt{E(z)+1}-\sqrt{E(z)-1}}{\sqrt{E(z)+1}}, \\
\frac{\Phi(z)}{\Phi(-z)} & =\frac{\sqrt{E(z)+1}+\sqrt{E(z)-1}}{\sqrt{E(z)+1}-\sqrt{E(z)-1}}=\frac{1}{2}(\sqrt{E(z)+1}+\sqrt{E(z)-1})^{2} \\
& =E(z)+\sqrt{E^{2}(z)-1}=C(z) .
\end{aligned}
$$

This completes the proof of
Theorem 3. Let the sequence $\left\{f_{n}(x)\right\}_{1}^{+\infty}$ satisfy (2.10). It will also satisfy

$$
\begin{equation*}
f_{n}(-x)=(-1)^{n} x f_{n}(x) \quad(n=1,2, \ldots) \tag{3.13}
\end{equation*}
$$

if and only if the coefficient $C_{n, k}$ satisfies

$$
\begin{equation*}
C_{n, k}=C_{n, n-k+1} \quad(1 \leqq k \leqq n) \tag{3.14}
\end{equation*}
$$

The condition (3.13) is satisfied if and only if $C(z)=1+\sum_{n=1}^{+\infty} c_{n} \frac{z^{n}}{n!}$ satisfies

$$
\begin{equation*}
C(z) C(-z)=1 \tag{3.15}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
C(z)=\frac{\Phi(z)}{\Phi(-z)}, \quad \Phi(z)=1+\sum_{n=1}^{+\infty} d_{n} \frac{z^{n}}{n!} . \tag{3.16}
\end{equation*}
$$

If we replace z by $(x-1) z$ the generating function becomes

$$
\begin{equation*}
\sum_{r, s=0}^{+\infty} C(r, s) \frac{x^{r} y s}{(r+s+1)!}=\frac{\Phi(x-y)-\Phi(y-x)}{x \Phi(y-x)-y \Phi(x-y)}, \tag{3.17}
\end{equation*}
$$

where $C(r, s)=C_{r+s+1, r+1}=C_{r+s+1, s+1}=C(s, r)$.
We remark that if $G=G(x, y)=\frac{\Phi(x-y)-\Phi(y-x)}{x \Phi(y-x)-y \Phi(x-y)}$, it can be verified that

$$
\begin{equation*}
G_{x}+G_{y}=G^{2} . \tag{3.18}
\end{equation*}
$$

Also

$$
\begin{gathered}
G+x G_{x}+y G_{y}=(x-y)^{2}\left(\Phi(x-y) \Phi^{\prime}(y-x)+\Phi(y-x) \Phi^{\prime}(x-y)\right), \\
1+(x+y) G+x y G^{2}=(x-y)^{2} \Phi(x-y) \Phi(y-x) .
\end{gathered}
$$

It follows that

$$
\sum_{r, s=0}^{+\infty} C(r, s) \frac{x^{r} y^{s}}{(r+s)!}=\frac{(x-y)^{2}\left(\Phi(x-y) \Phi^{\prime}(y-x)+\Phi(y-x) \Phi^{\prime}(x-y)\right)}{(x \Phi(y-x)-y \Phi(x-y))^{2}}
$$

Only in the Eulerian case $(C(r, s)=A(r, s))$ do we have

$$
\sum_{r, s=0}^{+\infty} C(r, s) \frac{x^{r} y^{s}}{(r+s)!}=(1+x G(x, y))(1+y G(x, y))
$$

It follows from (3.17) that

$$
\sum_{r, s=0}^{+\infty} C(r, s) \frac{x^{r+s}}{(r+s+1)!}=\frac{2 \Phi^{\prime}(0)}{1-2 x \Phi^{\prime}(0)}=\frac{c_{1}}{1-c_{1} x}
$$

so that $\sum_{r+s+n} C(r, s)=c_{1}^{n+1}(n+1)$! or, what is the same,

$$
\begin{equation*}
\sum_{k=1}^{n} C_{n, k}=c_{1}{ }^{n} n! \tag{3.20}
\end{equation*}
$$

4. We now consider the „degenerate" Eulerian number $A_{n, k}(\lambda)$ defined by

$$
\begin{equation*}
\frac{1-x}{1-x(1+\lambda z(1-x))^{\mu}}=1+\sum_{n=1}^{+\infty} \frac{z^{n}}{n!} \sum_{k=1}^{n} A_{n, k}(\lambda) x^{k} \quad(\lambda \mu=1) . \tag{4.1}
\end{equation*}
$$

It follows that $A_{n, k}(\lambda)$ is a polynomial in λ. Put

$$
x H_{n}(\lambda, x)=(1-x)^{-n} \sum_{k=1}^{n} A_{n, k}(\lambda) x^{k} \quad(n \geqq 1),
$$

so that (4.1) becomes

$$
\begin{equation*}
\frac{1-x}{1-x(1+\lambda z)^{n}}=\sum_{n=0}^{+\infty} \frac{z^{n}}{n!} H_{n}(\lambda, x) . \tag{4.2}
\end{equation*}
$$

It folows from (4.2) that $H_{n}(\lambda, x)$ satisfies
(4.3) $x(1-y) H_{n}(\lambda, x)-y(1-x) H_{n}(\lambda, y)=(x-y)(H(\lambda, x)+H(\lambda, y))^{n} \quad(x \neq y)$
where $H_{0}(\lambda, x)=1$. Differentiation of (4.2) with respect to z yields

$$
x(1-x)(1+\lambda x) \sum_{n=0}^{+\infty} \frac{z^{n}}{n!} H_{n+1}(\lambda)=\left(\frac{1-x}{1-x(1+\lambda z)^{\mu}}\right)^{2}-\frac{(1-x)^{2}}{1-x(1+\lambda z)^{\mu}} .
$$

Comparing coefficients of z^{n}, we get
(4.4) $(1-x) H_{n+1}(\lambda, x)+(1-x)(1+n \lambda) H_{n}(\lambda, x)=(H(\lambda, x)+H(\lambda, x))^{n}$.

To get the quasi-symmetry property we replace λ by $-\lambda$ and x by x^{-1} in (4.2). This gives

$$
\begin{equation*}
x H_{n}\left(-\lambda, \frac{1}{x}\right)=(-1)^{n} H_{n}(\lambda, x) \quad(n \geqq 1) . \tag{4.5}
\end{equation*}
$$

Since $H_{n}(\lambda, x)=(1-x)^{-n} \sum_{k=1}^{n} A_{n, k}(\lambda) x^{k},(4.5)$ is equivalent to

$$
\begin{equation*}
A_{n, n-k+1}(\lambda)=A_{n, k}(-\lambda) \quad(1 \leqq k \leqq n) . \tag{4.6}
\end{equation*}
$$

Now let $\left\{f_{n}(\lambda, x)\right\}_{0}^{+\infty}$ be a sequence such that $f_{0}(\lambda, x)=1$ and

$$
\begin{align*}
(1-x) f_{n+1}(\lambda, x)+(1-x) & (1+n \lambda) f_{n}(\lambda, x) \tag{4.7}\\
& =(f(\lambda, x)+f(\lambda, x))^{n} \quad(n=0,1,2, \ldots)
\end{align*}
$$

Put

$$
\begin{equation*}
F \equiv F(\lambda, x, z)=\sum_{n=0}^{+\infty} f_{n}(\lambda, x) \frac{z^{n}}{n!} \tag{4.8}
\end{equation*}
$$

Since $F_{z}(\lambda, x, z)=\sum_{n=0}^{+\infty} f_{n+1}(\lambda, x) \frac{z^{n}}{n!}$ and $z F_{z}(\lambda, x, z)=\sum_{n=0}^{+\infty} n f_{n}(\lambda, x) \frac{z^{n}}{n!}$, it follows from (4.7) that

$$
\begin{equation*}
(1-x)(1+\lambda z) F_{z}=F^{2}-(1-x) F . \tag{4.9}
\end{equation*}
$$

The general solution of (4.9) is

$$
\frac{F-1+x}{F}=K(1+\lambda z)^{\mu} .
$$

Since $F(\lambda, x, 0)=1, K=x$ and therefore

$$
F(\lambda, x, z)=\frac{1-x}{1-x(1+\lambda z)^{\mu}} .
$$

We may state:

Theorem 4. Let $\left\{f_{n}(\lambda, x)\right\}_{0}^{+\infty}$ denote a sequence such that $f_{0}(\lambda, x)=1$ and $\left.(1-x) f_{n+1}(\lambda, z)+(1-x)(1+n \lambda) f_{n}(\lambda, x)=f(\lambda, x)+f(\lambda, x)\right)^{n} \quad(n=0,1,2, \ldots)$.

Then

$$
f_{n}(\lambda x)=H_{n}(\lambda, x) \quad(n=0=0,1,2, \ldots)
$$

We now consider a sequence $\left\{f_{n}(\lambda, x){ }_{0}^{+\infty}\right.$ such that

$$
\begin{align*}
& x(1-y) f_{n}(\lambda, x)-y(1-x) f_{n}(\lambda, y) \tag{4.10}\\
& =(x-y)(f(\lambda, x)+f(\lambda, y))^{n}(x \neq y) ; \quad n=0,1,2, \ldots
\end{align*}
$$

Again define $F(\lambda, x, z)$ by (4.8). Then (4.10) implies
(4.11) $x(1-y) F(\lambda, x, z)-y(1-x) F(\lambda, y, z)=(x-y) F(\lambda, x, z) F(\lambda, y, z)$.

Divide both sides of (4.11) by $x-y$ and let $y \rightarrow x$. We get

$$
\begin{equation*}
F^{2}(\lambda, x, z)=F(\lambda, x, z)+x(1-x) F_{x}(\lambda, x, z) \tag{4.12}
\end{equation*}
$$

The general solution of (4.12) is

$$
\begin{equation*}
F(\lambda, x, z)=\frac{1-x}{1-x C(\lambda, z)} . \tag{4.13}
\end{equation*}
$$

Since $F(\lambda, x, 0)=1, C(\lambda, 0)=1$.
This proves
Theorem 5. Let $\left\{f_{n}(\lambda, x\}_{0}^{+\infty}\right.$ denote a sequence such that $f_{0}(\lambda, x)=1$ and

$$
\begin{aligned}
x(1-y) f_{n}(\lambda, x) & -y(1-x) f_{n}(\lambda, y) \\
& =(x-y)(f(\lambda, x)+f(\lambda, y))^{n} \quad(x \neq y ; n=0,1,2, \ldots)
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{n=0}^{+\infty} f_{n}(\lambda, x) \frac{z^{n}}{n!}=\frac{1-x}{1-x C(\lambda, z)}, \tag{4.14}
\end{equation*}
$$

where

$$
\begin{equation*}
C(\lambda, z)=1+\sum_{n=1}^{\infty} c_{n}(\lambda) z^{n} \tag{4.15}
\end{equation*}
$$

5. We now require that $f_{n}(\lambda, x)$ satisfy

$$
\begin{equation*}
x f_{n}\left(-\lambda, \frac{1}{x}\right)=(-1)^{n} f_{n}(\lambda, x) \quad(n \geqq 1) \tag{5.1}
\end{equation*}
$$

It follows that

$$
F(\lambda, x, z)=1+x \sum_{n=1}^{+\infty}(-1)^{n} f_{n}\left(-\lambda, \frac{1}{x}\right) \frac{z^{n}}{n!}=1-x+x \sum_{n=0}^{+\infty}(-1)^{n} f_{n}\left(-\lambda, \frac{1}{x}\right) \frac{z^{n}}{n!},
$$

so that

$$
\begin{equation*}
F(\lambda, x, z)=1-x+x F\left(-\lambda, \frac{1}{x},-z\right) \tag{5.2}
\end{equation*}
$$

Hence by (4.14) and (5.2),

$$
\frac{1-x}{1-x C(\lambda, z)}=1-x+\frac{x\left(1-x^{-1}\right)}{1-x^{-1} C(-\lambda,-z)} .
$$

Simplifying, we get

$$
\begin{equation*}
C(\lambda, z) C(-\lambda,-z)=1 \tag{5.3}
\end{equation*}
$$

We shall show that (5.3) is equivalent to

$$
\begin{equation*}
C(\lambda, z)=\frac{\Phi(\lambda, z)}{\Phi(-\lambda,-z)} \tag{5.4}
\end{equation*}
$$

It follows from (5.3) that

$$
\begin{equation*}
\log C(\lambda, z)+\log C(-\lambda,-z)=0 \tag{5.5}
\end{equation*}
$$

Thus we may put $\log C(\lambda, z)=\sum_{r=0}^{+\infty} \sum_{s=1}^{+\infty} c_{r s} \lambda^{r} z^{s} ;$ by (4.15) the lower limit for $s \geqq 1$. Hence, by (5.5), $\sum_{r, s}\left(1+(-1)^{r+s}\right) c_{r s} \lambda^{r} z^{s}=0$, so that

$$
\begin{equation*}
c_{r s}=0(r+s \equiv 0(\bmod 2)) \tag{5.6}
\end{equation*}
$$

Let $P(\lambda, z)$ denote a power series in λ and $z: P(\lambda, z)=\sum_{r, s} p_{r s} \lambda^{r} z^{s}$ and. consider the functional equation

$$
\begin{equation*}
P(\lambda, z)-P(-\lambda . z)=\log C(\lambda, z) \tag{5.7}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\left(1-(-1)^{r+s}\right) p_{r s}=c_{r s} \tag{5.8}
\end{equation*}
$$

For $r+s \equiv 0(\bmod 2),(5.8)$ is satisfied automatically because of (5.6); for $r+s \equiv 1(\bmod 2), p_{r s}$ is uniquely determined by (5.8). Hence, for $\Phi(\lambda, z)$, $=\exp P(\lambda, z)$, we get (5.4).

The series $\Phi(\lambda, z)$ is of course not uniquely determined; the above proof indicates that $\Phi(\lambda, z)$ may be multipled by an arbitrary series of the form $\sum_{r+s=0(2)} d_{r s} \lambda^{r} z^{s}$.

Summing up, we state
Theorem 6. Let the sequence $\left\{f_{n}(\lambda, x)\right\}_{1}^{+\infty}$ satisfy (4.10). It will also satisfyr

$$
\begin{equation*}
x f_{n}\left(-\lambda, \frac{1}{x}\right)=(-1)^{n} f_{n}(\lambda, x) \quad(n=1,2, \ldots) \tag{5.9}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
C(\lambda, z) C(-\lambda,-z)=1 \tag{5.10}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
C(\lambda, z)=\Phi(\lambda, z) / \Phi(-\lambda,-z) \tag{5.11}
\end{equation*}
$$

where $\Phi(\lambda, z)$ may be assumed to be of the form $\Phi(\lambda, z)=\sum_{r, s} a_{r s} \lambda^{r} z^{s}$ and

$$
\begin{equation*}
a_{r s}=0(r+s>0 ; r+s \equiv 0(\bmod 2)) \tag{5.12}
\end{equation*}
$$

As an example, for $C(\lambda, z)=(1+\lambda z)^{\mu}$, we may take $\Phi(\lambda, z)=(1+\lambda z)^{\mu / 2}$, although this choice of $\Phi(\lambda, z)$ does not satisfy (5.12).

By (4.14) and (5.11) we have

$$
\begin{align*}
1+\sum_{n=1}^{+\infty} \frac{z^{n}}{n!} \sum_{k=1}^{n} C_{n, k}(\lambda) x^{k} & =\frac{1-x}{1-x C(\lambda, z-x z)} \tag{5.13}\\
& =\frac{(1-x) \Phi(-\lambda, x z-x)}{\Phi(-\lambda, x z-x)-x \Phi(\lambda, z-x z)}
\end{align*}
$$

where

$$
(1-x)^{n} f_{n}(\lambda, x)=\sum_{k=1}^{n} C_{n, k}(\lambda) x^{k}
$$

Replacing x by $x z^{-1}$ in (5.13) we get after a little manipulation

$$
\begin{equation*}
\sum_{r, s=0}^{+\infty} C(r, s, \lambda) \frac{x^{r} y^{s}}{(r+s+1)!}=\frac{\Phi(\lambda, y-x)-\Phi(-\lambda, x-y)}{y \Phi(-\lambda, x-y)-x \Phi(\lambda, y-x)}, \tag{5.14}
\end{equation*}
$$

where

$$
\begin{equation*}
C(r, s, \lambda)=C_{r+s+1, r+1}(\lambda)=C_{r+s+1, s+1}(-\lambda)=C(s, r,-\lambda) . \tag{5.15}
\end{equation*}
$$

It is evident frum (4.2) that $H_{n}(\lambda, x)$ is a polynomial in λ of degre $\leqq n$. More precisely it follows from

$$
H_{n}(\lambda, x)=(1-x)^{-n} A_{n}(\lambda, x), \quad A_{n}(\lambda, x)=\sum_{k=1}^{n} A_{n, k}(\lambda) x^{k},
$$

that $A_{n}(\lambda, x)$ is a polynomial of degree $\leqq n$ in x and of degree $\leqq n-1$ in λ. Moreover it is proved in [1] that $A_{n, k}(\lambda)$ is a polynomial in λ of degree $. n-1$ for $k=1, \ldots, n$.

In the more general case of $f_{n}(\lambda, x)$, we can again assert that

$$
(1-x)^{n} f_{n}(\lambda, x)
$$

is a polynomial of degree $\leqq n$ in x. As for the parameter λ, if we put

$$
\begin{equation*}
C(\lambda, z)=1+\sum_{n=1}^{+\infty} c_{n}\left(\lambda \frac{z^{n}}{n!}\right. \tag{5.16}
\end{equation*}
$$

and assume that $c_{n}(\lambda)$ is a polynomial of degree $\leqq n-1$ in λ, then this is also true of $C_{n, k}(\lambda)$. Also it follows from (4.14) and (5.16) that

$$
C_{n, 1}(\lambda)=c_{n}(\lambda) .
$$

Hence, if (5.9) is assumed to hold, we get

$$
C_{n, n}(\lambda)=C_{n, 1}(-\lambda)=c_{n}(-\lambda) .
$$

REFERENCES

1. L. Carlitz: Degenerate Bernoulli, Stirling and Eulerian numbers. Utilitas Mathematica, to oppear.
2. L. Carcitz: Eulerian numbers and polynomials. Math. Mag. 32 (1959), 247-260.
3. L. Carlitz: The product of two Eulerian polynomials. Math. Mag. 37 (1963), 37-41.
4. L. Ca rlitz and Richard Scoville: Generalized Eulerian numbers: combinatorial applications. J. für die reine und angewandte Math. 265 (1974), 110-137.
5. L. Carlitz, Richard Scoville and Theresa Vaughan: Enumeration of pairs of permutations. Discrete Mathematics 14 (1976), 215-239.
6. G. Frobenius: Uber die Bernoullischen Zahlen und die Eulerschen Polynome. Gesammelte Abhandlungen. Berlin-Heidelberg-New York, 1968, Band III, 440-478.
7. J. Riordan: An Introduction to Combinatorial Analysis. New York, 1958.

Department of Mathematics
Duke University
Durham, N.C.
U.S.A.

