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609. A MIXED THEORY OF INFORMATION - VI: AN EXAMPLE
AT LAST: A PROPER DISCRETE ANALOGUE OF THE

CONTINUOUS SHANNON MEASURE OF INFORMATION
(AND ITS CHARACTERIZATION)

J. Aczel

Dedicated to D. S. Mitrinovic on his 70 th birthady.

1. In a series of papers [5, 2, 6, 13, 3] a mixed theory of information has
been proposed, mainly in an axiomatic manner, where measures of information
may depend both upon the events (elements of a ring of sets, messages, out-
comes of experiments, weather, market situations, answers to questionnaires,
subranges of values of a random variable, etc.) and their probabilities. In
particular in [5] and [3], from certain hypotheses, the following general forms
of these so called "inset entropies" were found

(1)

(OlogO: =0, Pi~O,

n
and, in particular, if U Xi = Q (the certain event), then

i~l

(2)

In both formulas, c is an arb:trary constant, g an arbitrary real valued function
of events (subsets of Q). (It will not be assumed here that the reader is fami-
liar with the papers quoted above.)

The requirements, which have produced these formulas (those relevant
for the present paper will be repeated in the Theorem below), are rather
natural and it is clearly of advantr.ge, even desirable (cf. also [19], where
formally similar expressions have also been arrived at and applied), to allow
measures of information depend also explicitly upon the events, not only their
probabilities. But, requests were often made, and rightly so, for a nontrivial
example of a previously known information measure which fits better into the
new theory than into the traditional one.

In section 2 of this paper we g:ve a more orthodox example than that
in [19], this one arising directly fiOm the heart of the classical SHANNON-WIENER
theory. In accordance with our personal tastes and interests, we give also a
set of properties which characterize this quantity among those described in (1).
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2. B. FORTE has (verbally) called our attention to the paradox which has
raised quite a bit of argument (see, e. g. [23, 24, 9, 8, 25, 21, 20], also about
other disadvantages of (3», that the usual measure

(3) - f fJ(t) log p (t) dt
u

of uncertainty for continuous probability distributions (p is the probability
frequency function) is, contrary to one's first impression, not the limit of the
SHANNONentropy fur discrete distributions

(4)
n

- L P(ti) logp(ti)'
i=1

It is the limit of (all logarithms are of base 2)

n

- L p ('t"i) log p (-rJ (ti -- ti-I)
i~1

that is, with appropriate choice of the 't"i
(i = 1, . . . , n) and with the distribu-

tion fupction F (F' = p, F (u) = 0, F(v) = 1), the limit of

(5)

If, as usual, F(ti) - F(ti-l) = Pi is interpreted as the probability belonging
n

to the interval Xi=]ti-l' ti]' i= I,..., n, U Xi=]u, v]=U, then (5) goes over
i~1

into an inset entropy

(6)
n n

- L Pi logpi + L Pi log I (X;)
i=1 i=1

(where I (Xi) is the length of X;), clearly an expression of the form (2).
As it has also been pointed out to us, contrary to (4), the amount (6)

is not necessarily nonnegative since (3) may be positive for some probability
distributions and negative for othe;'s. (See, e. g., [18]). Our characterizations
[5, 3] did not contain any nonnegativity supposition either. - On the other
hand, for Pj = 1, Pi = 0 (i =1=j) that is, if the value of the random variable
certainly falls into Xj' then (6) reduces to

(7) log I(X).

In particular, if n = 1, XI = U = ] u, v], then we get

(8) 10gl(U)

as measure of uncertainty, if we know only that the value of the random
variable falls into U, but don't know its probability distribution. If we know
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the distribution, the uncertainty reduces to (6). The difference between those
two uncertainties is the amount

(9) Sn (::: ::: ',::) = logl(;~! Xi) +
it!

p;logp; -
it!

p;log/(X;)

n p leU)
= L p; log ~

;~! I (X;)

of information gained from the probability distribution.
Clearly (9) is a fine example of the "inset" masures (1) [with c = 1,

g (X) = - log I (X)]. Furthermore, by SHANNON'Sinequality, (9) is nonnegative.
Even more importantly, putting again Pj= I, p;=O (i::Fj) into (9), we get

(10) Sn(X" . .. , Xj, ... , Xn)= - log
I(Xj)

0, ...,1,...,0 leU)

as the measure of information gained from the knowledge that the value of
the random variable lies in the subinterval Xj of U. But (10) is exactly the
measure of information introduced by N. WIENER [26] which, together with
SHANNON'Smeasures (3) and (4), was at the source of the whole (then) new
information theory in 1948.

3. The question arises (raised also by F. ZORZITTOon a functional equations
seminar at the University of Waterloo), what characterizes this "Shannon-Wiener
inset information" (9) among the inset measures (1). B. FORTE has conjectured
that invariance under shift and change of scale (homothecy: stretching or
shrinking) with some regularity conditions would do the trick. This we can
formulate (under somewhat weaker conditions) and prove in the following way.

We consider now the general formula (1) in the case where the "event X;"
stands for "the value of the random variable falls into the interval X;". We
put, again, Pj = 1, p; = 0 (i::Fj), this time into (1). We know by now what this
means: information arising Lorn the knowledge that the value of the random
variable falls exactly into Xj among the subintervals. We will formulate our
conditions for the quantity

(11) j,(X X)=/ (Xl,...,Xj-l> Xj, Xj+l,...,Xn )j 1'. . ., n n 0, . ., 0, 1, 0, . . ., 0

thus obtained, that is, see (1), for

(12)

{

fj(XI'...' Xn)=g(Xj)-g(~! x;)=g(Xj)-g(U)

(X;=]tH,t;J (i=I,...,n), U=~!X;=]to,tn]=]U,V]).

The shift invariance means, for (11),

(13) f;(X! +s, ..., Xn+s)=f;(Xp ..., Xn) (X;+s=] tH +s, t;+s], i= 1,..., n)

and, with (12),

(14) g(x+s, y+s)-g(u+s, v+s)=g(x, y)-g(u, v) (u;;;;x<y;;;;vER, sER).

5*
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Here we wrote, for the sake of simplicity, t1-1 = x, tj = Y and

(15) g(x, y): =g(] x, y])=g(Xj)'

We choose s= -x= -U, (X=Xj-l =xo=u, thus j= I) and v=b (constant,
choose it large and/or extend later) in (14) and get g (x, y) = g (0, y - x)
+g(x, b)-g(O, b-x), that is,

(16) g (x, y) = IX(y - x) + ~ (x).

(for all x <y -;;;,b but, since we could choose b as large as we wanted, (16)
holds for all x<y), where

(17) IX(Z)=g(O, z)

and

(18) ~(x)=g(x, b)-g(O, b-x).

Putting (16) back into (14), we have ~(x+s)-~(u+s)=~(x)-~(u) or,
by holding u constant (small), ~ (x + s) = ~ (x) + y (s).

This is a PEXIDERequation [1]. If g is measurable, so is ~, by (18),
and thus ~ (x) = Bx+ C, (B, C constants) and, cf. (16),

(19) g(x, Y)=IX(y-x)+Bx

(we have sumberged C into IX).

Invariance against homothecy (change of scale) means, on the other hand,

(20) fj(X1t,..., Xnt)=Jj(Xp..., Xn) (t>O, X;1=] ti-t t, t;1], i= 1, ..., n)

that is, cf. (12), (15),

(21) g(xt, yt)-g(ut, vt)=g(x, y)-g(u, v)

Substituting (19) into (21), we get

(u-;;;'x<y-;;;'v, t>O).

(22) IX[t (y- x)] + Btx- IX[t(v - u)] - Btu= IX(Y- x) + Bx- IX(v - u) - Bu.

If we choose y = x + d (d constant), the comparison of the coefficients
of x on both sides of (22) gives B = 0, reducing (19) to

(23) g (x, y) = IX(y - x) (x<y)

and (22), with z=y-x>O, w=v-u>O, to

IX(tz) - IX(tw) = IX(z) - IX(w) (z>O, w>O, t>O)

or, holding z constant,

for all t, w>O.

This is again a PEXIDERequation and since, if g is measurable, so is IX,
[cf. (17)], we have IX(t)=alogt+b
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(24)

Thus we get from (23), finally,

g(x, y)=alog(y-x)+b (x<y; a, b constants).

Substitution of (15) and (24) into (1) leaves us with

(25)
(X X )

n n

(
n

)
In P::::::P: =cj~IPjlogpj+a j~IPjlOgl(Xj)-alogl }:JIXj ,

(pj~O, ~Pi=l, Xj=]tj-p t;], tj>tj-1' I(X;}=tj-tj-1'

i = 1, . . . , n; a, c arbitrary constants),

very similar to (9). In view of [5], we have (almost) proved the following.

Theorem. The information, gained from the knowledge of the finite (discrete)
probability distribution of the values of a random variable on the straight line, is
given by (25) if and only if the following conditions are satisfied.

(i) In is symetric in columns.
(ii) In is recursive, that is

I (XI, X2, X),... , Xn)= 1 (XIUX2' X), .., , Xn ) ( + ) I
(

XI, X2

]
n n-I + PI P2 2 PI P2'

PI,P2'P)"", Pn Pt+P2. p), ..., Pn
- -
PI +P2 ' PI +P2

(n>2; 0.1 (XI, X2 )=0 ).2
0/0, 0/0

(iii) The functions t ~ I (XI, X2) and2 I-t, t

( ) I (XI,".,Af-I'Af,Af+I'"''Xn )tj-1' tj ~ j
0, . . ., 0 . 1, 0, . .., 0

(26)

are measurable (for one j).
(iv) The functions I or just fj (for one j), as defined in (11), are invariant

under shift and change of scales, that is, (13) and (20) are satisfied.

Proof. Only a few additions are needed to the above proof. In [5], the
result (1) has been proved from (i), (ii) and the first part of (iii). There is
just one hitch. In [5] also Xj = 0 (the empty set) was permitted, while here
tj-I <tj was supposed. However, the proof in [5] has been carefully carried out
that way that it remains valid if Xj = 0 implies Pj = O. Then, of course, there
is no problem in extending the defmition of our In and the validity of (1)
and of the proofs in this paper, to the case when some tj- tj-I =O=Pj [since
they will not change the right hand side of (1)].

Notice also that we needed the conditions (13) and (20) only for one j.
(At one point we chose j = 1 because of Xj-I = U, but this is possible now
for any j, in view of the extension which we have just made).

Finally, as partly mentioned above, if the function defined in (26) is
measurable, so are, by (12), (15), (17), and (18), IX and ~.

Thus we have established everything needed for the argument preceeding
the Theorem, which is now provea.
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4. However, (25) is still not (9). In order to characterize (9), we consider
the po~sibi1ity that

I (Xi)
Pi= I(U)

that is, the distribution is uniform, the probability just equals the quotient of
lengths of the respective subinterval and of the whole interval. Then the
quantity (9) reduces to zero as it might well do: we did not really gain any
new information by knowing this probability distribution. We can see this also
in the following way. If we put (27) into (6), we get exactly the amount (8)
obtained without knowledge of any probability distribution. If this condition
(no new information is gained from the knowledge that the probability distrib,ution
is uniform on the subinterval when, from all we knew, it was un!form on the
whole interval)

(27) (i = 1, .. . , n)

I ( X,,"',Xn )=0n /(Xl)fl(U),..., I(Xn)fl(U)

is added to those which have given us (25), we get a = - c, that is, cf. (9),

(v)

(28)

Clearly already

12
(

:1' ~2

]
= 0

2 ' 2

does the trick, giving us a = - c and thus (28).
Finally, if we insist on obtaining exactly Sn' without even the multipli-

cative constant c, we just have to choose the unit of information appropriately
(one bit), for instance by postulating

(vi)

(vii) I' (X X ) = I (Xl, X2 )= 11 l' 2 21,0

that is, we get one bit of information from the knowledge that the value of a
random variable falls into a given half of the whole interval. Thus we have
proved the following:

Corollary. If, in addition to (1)- (iv), we have also (v), or even just (vi), then
we get (28) [cf (9)] and if we have (vii) on top of all, then In is the "Shannon-
- Wiener inset entropy" (9).

I(X)
REMARK.By writing q. = -'- the "SHANNON-WIENERinset entropy" (9) [butI I(U)'

not (6)] goes over into a (purely) probabilistic directed divergence

for which several characterizations are known (see, e. g. [15, 11, 14, 12, 4, 10, 13]'
But we did not need them there.

.
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Indeed, while the controversies over the entropies (3) and (4), mentioned
at the beg;nning, and the advantages of (9) have lead to the preference
of directed divergences over entropies (in particular for continuous distri-
butions, cf., also for interpretations, [23, 9, 24, 25]), the present paper
shows that the key quantities (6) and (9) are special cases of "inset"
entropies. So are also the wmewhat more general expresions in [23, 24, 9, 25]
(cf. [22, 16, 17, 7, 10]). - We see also that the union of events U =] u, v] may
vary here from case to case. So it is of advantage that we took in (1) condi-
tional probabilities, relative to the union of events and that we did not restrict
ourselves to the case where this union is universally fixed (Q).

This research has been supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada.
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