Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. № 602 - № 633 (1978), 61-63.

608. RELATIVE SINGULAR VALUES OF LINEAR TRANSFORMATIONS

Ali R. Amir-Moéz

To Professor D. S. Mitrinović, with my admiration
This exposition intends to give some applications of properties of proper values and singular values of linear transformations on a unitary space to relative singular values of linear transformations. We shall give a few samples.

1. Definitions and Notations. A unitary spece of dimension n will be denoted by E_{n}. Vectors will be indicated by Greek letters and complex numbers by latin letters. Most standard notations will be used. Let A be a linear transformation on E_{n}. Then the positive square roots of the proper values of $A^{*} A$ are called absolute singular values of A or simply singular values of A. Let H be a Hermitian transformation on E_{n}. Then proper values of $A^{*} H A$ are called relative singular values of A relative to H. In particular we will study the case that H is a positive (positive definite) transformation. Thus we will use the following definition:

Let H be a positive linear transformation and A any linear transformation on E_{n}. Then $A^{*} H A$ is non-negative [2]. The positive square roots of proper values of $A^{*} H A$ are defined to be relative singular values of A relative to H.

If $j_{p} \leqq i_{p}$ for $p=1, \ldots, k$, we write $\left(j_{1}, \ldots, j_{k}\right) \leqq\left(i_{1}, \ldots, i_{k}\right)$. Given any sequence $i_{1} \leqq \cdots \leqq i_{k}$ of integeres such that $i_{p} \geqq p, p=1, \ldots, k$, let ($i_{1}{ }^{\prime}, \ldots, i_{k}{ }^{\prime}$) denote the strictly increasing sequence of positive integers such that
(a)

$$
\left(i_{1}{ }^{\prime}, \ldots, i_{k}{ }^{\prime}\right) \leqq\left(i_{1}, \ldots, i_{k}\right)
$$

$$
\begin{equation*}
\left(j_{1}, \ldots, j_{k}\right) \leqq\left(i_{1}, \ldots, i_{k}\right) \tag{b}
\end{equation*}
$$

where $\left(j_{1}, \ldots, j_{k}\right)$ is a strictly increasing sequence of positive integers which is less than or equal to $\left(i_{1}, \ldots, i_{k}\right)$. One observes that $\left(i_{1}{ }^{\prime}, \ldots, i_{k}{ }^{\prime}\right)$ is given by

$$
i_{k}^{\prime}=i_{k}, i_{p}^{\prime}=\min \left(i_{p}, i_{p+1}-1\right)(p=k-1, \ldots, 1)
$$

2. A Set of Theorems. We shall state the theorems which will be used in this note [1].
(i) Let $i_{1} \leqq \cdots \leqq i_{k}$ and $j_{1} \leqq \cdots \leqq j_{k}$ be sequences of positive integers such that $i_{k} \leqq n, j_{k} \leqq n, i_{p}+j_{j} \geqq n+p, p=1, \ldots, k$, and $k \leqq n$. Let $C=A+B$, where A and B are Hermitian transformations on E_{n}. Suppose

$$
a_{1} \geqq \cdots \geqq a_{n}, \quad b_{1} \geqq \cdots \geqq b_{n}, c_{1} \geqq \cdots \geqq c_{n}
$$

are proper values of A, B, and C respectively. Then

$$
a_{i_{1}}^{\prime}+\cdots+a_{i_{k}}^{\prime}+b_{j_{1}}^{\prime}+\cdots+b_{j_{k}}^{\prime} \leqq c_{\left(i_{1}+j_{1}-n\right)^{\prime}}+\cdots+c_{\left(i_{k}+j_{k}-n\right)^{\prime}},
$$

where, for example, $\left(i_{1}{ }^{\prime}, \ldots, i_{k}{ }^{\prime}\right)$ is the sequence described in $\S 1$.
(ii) Let A and B be non-negative transformations on E_{n} and $C=A B$. Then the proper values of C are real and non-negative. Let $c_{1} \geqq \cdots \geqq c_{n}$, $a_{1} \geqq \cdots \geqq a_{n}$, and $b_{1} \geqq \cdots \geqq b_{n}$ be respectively proper values of C, A and B. Let $\left(i_{1}, \ldots, i_{k}\right)$ be a strictly increasing sequence of positive integers such that $i_{k} \leqq n$. Then.

$$
\begin{align*}
& c_{i 1} \cdots c_{i k} \leqq a_{1} \cdots a_{k} \cdot b_{i_{1}} \cdots b_{i_{k}} \tag{1}\\
& c_{i_{1}} \cdots c_{i_{k}} \leqq b_{1} \cdots b_{k} \cdot a_{i_{1}} \cdots a_{i k} . \tag{2}
\end{align*}
$$

There are other theorems which may be applied. We shall leave them to the reader.
3. Theorem. Let A be a linear transformation and H a positive transformation on E_{n}. Let $a_{1} \geqq \cdots \geqq a_{n}$ be singular values of $A, r_{1} \geqq \cdots \geqq r_{n}$ be relative singular values of A relative to H, and $h_{1} \geqq \cdots \geqq h_{n}$ be proper values of H. Then

$$
\begin{equation*}
r_{i 1}^{2} \cdots r_{i k}^{2} \leqq a_{1}^{2} \cdots a_{k}^{2} \cdot h_{i 1} \cdots h_{i k}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i_{1}}^{2} \cdots r_{i k}^{2} \leqq h_{1} \cdots h_{k} \cdot a_{i 1}^{2} \cdots a_{i k}^{2} \tag{2}
\end{equation*}
$$

where $\left(i_{1}, \ldots, i_{k}\right)$ is the sequence described in $\S 2$ (i).
Proof. Even though $A^{*} H A$ itself does not fit the hypothesis of 2 (i); one observes that $A A^{*} H$ has the same proper values as $A^{*} H A$. Thus the proof is clear.
4. Theorem (Relative Singular Values of a Sum). Let A and B be linear transformations on E_{n}. Let $r_{1} \geqq \cdots \geqq r_{n}$ and $s_{1} \geqq \cdots \geqq s_{n}$ be respectively relative singular values of A and B relative to H, a positive linear transformation on E_{n}. Let $t_{1} \geqq \cdots \geqq t_{n}$ be relative singular values of $A+B$. Then

$$
r_{i_{1}{ }^{2}}+\cdots+r_{i_{k}}{ }^{\prime 2}+s_{j_{1}}{ }^{2}+\cdots+s_{j_{k}}{ }^{2} \leqq t_{\left(i_{1}+j_{1}-n\right)^{\prime}}+\cdots+t_{\left(i_{k}+j_{k}-n\right)^{\prime}},
$$

where $\left(i_{1}, \ldots, i_{k}{ }^{\prime}\right)$ is the sequence described in $\S 1$.
This theorem follows directly from $\S 2$ (i).
5. Theorem (Relative Singular Values of a Product). Let A and B be linear transformations on E_{n}. Let $r_{1} \geqq \cdots \geqq r_{n}$ be relative singular value of $A B$ relative to H, a positive transformation on E_{n}. Let $s_{1} \geqq \cdots \geqq s_{n}$ be relative singular values of A relative to H and $b \geqq \cdots \geqq b_{n}$ be absolute singular volues of B. Then

$$
\begin{equation*}
r_{i_{1}} \cdots r_{i_{k}} \leqq s_{1} \cdots s_{k} b_{i_{1}} \cdots b_{i_{k}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i_{1}} \cdots r_{i k} \leqq s_{i_{1}} \cdots s_{i k} b_{1} \cdots b_{k} \tag{2}
\end{equation*}
$$

where $\left(i_{1}, \ldots, i_{k}\right)$ is the sequence described $\S 2$ (i).

Proof. One observes that $B^{*} A^{*} H A B$ has the same proper values as $\left(A^{*} H A\right)\left(B B^{*}\right)$. Thus applying 2 (i) the proof is clear.
6. Questions. In this note only a sample set of applications was given. One may obtain other inequalities. If H is any Hermitian transformation, the problem becomes complicated. It would be interesting to study this case. One also can extend the problem to the case that H is non-negative.

Note that in what was studied we didn't obtain inequalities relating rela-tive singular values of A, B, and $A B$ of section 5 . Thus, this is left as a question.

REFERENCES

1. A. R. Amir-Móez: Extreme properties of eigenvalues of Hermitian transformations and singular of the sum and product of linear transformations. Duke Math. J. 23 (1956), 463-476.
2. A. R. Amir-Moéz: Product of Hermitian Transformations. These Publications № 498-№ 541 (1975), 159—161.

Department of Mathematics
Texas Tech University
Lubbock, TX 79409
U.S.A.

