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607. NOTES ON CONVEX FUNCTIONS II: ON CONTINUOUS
LINEAR OPERATORS DEFINED ON A CONE

OF CONVEX FUNCTIONS *

Petar M. Vasic and Ivan B. Lackovic

o. In this paper a theorem (Theorem 2) is proved providing necessary and
sufficient conditions for the validity of (1) for an arbitrary convex function,
A being a linear and continuous operator. Theorems 3 - 5 are equivalent
forms of theorem 2 which are more suitable for applications. The applications
of the results obtained in this paper will be presented in a few forthcoming
notes which will be published under the same title.

1. A large number of theorems from the theory of convex functions are of
the from
(1) Af~O

where x h>-f(x) is a convex function and A a given linear operator. We must
emhasize, at the beginning, that we refer to the continuous function satisfying
the JENSENinequality on a closed and finite segment of the real straight line
(see [1] p. ] 7). On one hand a lot of properties of the class of convex
functions have form (1) and, on the other hand, the consequences of these
properties are also of the form (1). Roughly speaking, operators A appearing
in (I) are most often linear discrete operators, linear differential operators,
linear integ'al operators as well as their combinations (i. e. operators stemming
from the superposition of the previously derived operators). For the sake of
illustration we shall mention few examples.

n
Let nonnegative numbers Pi(i= 1, ..., n) be such that 2: Pi= 1

i~l
be a convex function on segment [a, b]. It is well known that the
inequality

and let.f

following

(2)

holds, for the arbitrary points xiE[a, b] (i= 1, ..., n). If the points Xi and the
weights Pi are fixed then defining the operator A by

(3)

inequatity (2) takes form (1). This is an example of a linear discrete operator.
In this case we assume that n is a fixed natural number.
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It is well known that twice differentiable function f is convex if and

only if f";G. O. Assuming that A =
d~2

the condition.f";:;; 0 gets form (I). This

is an example of a differential linear operator.
The majorization theorem (see [1] p. 126) supplies us with the necessary

and sufficient condition for validity of the inequality

(4)
1 1

Jf(x(t» dt~J f(y(t» dt
o 0

for every convex function f. At present we shall consider the linear integral
operator A of the form

(5)
1 1

Af= Jf(y(t»dt- Jf(x(t»dt.
o 0

Using (5), condition (4) gets form (I).

Starting, thus, from these examples of linear operators (as well as from
several others not quoted here) we arrived at the conclusion that it would be
of interest to give the necessary and sufficient conditions for arbitrary linear
operator so that (I) holds for any convex function f.

In the present paper we shall give a thoorem rei event to the necessary
and sufficient conditions for (I) to be valid for the arbitrary convex functionf,
as well as several equivalents of it, i. e. consequences. The proof of this theo-
rem of ours is based on papers by K. TODA [2] and T. POPOVICIU[3]. As
far as we know in the literature relevant to convex functions such a theorem
was not explicitly stated, up to now, though some of its very particular cases
were mentioned in [2], [3] and [4].

The applications of our theorem, i. e. some of the particular cases of
operator A will be presented in a few "notes" from this series.

2. As customary, we shall denote by C [a, b] a set of all functions continuous
on the segment [a, b] (- 00 <a<b< + (0) (f is continuous from the right at a

andf is continuous from the left at b). The norm of a function t 1--+ x (t)EC [a, b]
will be defined by

Jlxll= max [x(t)[.
a:::it;S,b

The sequence xn=xn(t)EC[a, b] will be assumed to converge towards
function x=x(t)EC[a,b] if lim Ilxn-xl[=O.

n-++oo

We shall further observe operators whose domain is the space C [a, b].
Let A be such an operator. The operator A will be considered as linear if

A (px + qy) = pAx + qAy

holds for each pair of real numbers p and q and for each pair of functions
x=x(t), y=y(t)EC[a, b].
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Let DCR and let S (D) be one of the normed subspaces of the space
of all real functions defined on D, with the norm IIxiiI for xES (D). For the
operator A: C [a, b] --+ S (D) we will say that it is continuous at the point
xoEC[a,b] if from the condition Ilxn-xoll--+O (n--++oo) it follows that
II AXn - Axo III --+ 0 (n --+ + 00) for every sequences of points xnEC [a, b].

For the operator A: C[a, b]--+S(D) we shall write Ax~O ifAx=F(t)~O
for every tED, where x=x(t) is a given function from C[a, b].

The real function f will be said to be convex on [a, b] if the inequality

f(ptl + (1- p) t2) ~pf(tl) + (1- p)f(t2)

is valid for every pair of points tl' t2E[a, b] and for any pE[O, 1]. The set
of all convex functions on [a, b] will be denoted by K [a, b]. It is obvious from
the foregoing that the inclusion K [a, b]C C [a, b] is valid (we consider only
those convex functions which are continuous from the right at the point a
and which are continuous from the left at the point b).

In the further work the following theorem will be used, which was proved
by K. TODA [2] and T. POPOVICIU[3] and which reads:

Theorem 1. (a) Every function of the sequence

(6)
m

Gm(t)=pt+q+ L: Pklt-tkl
k=O

(m=1,2,...),

where tE[a, b]; p, qER; Pk~O, tkE[a, b] (k=O, 1,..., m) is convex on [a, b].
(b) Every function f convex on [a, b] is the uniform limit of the sequence Gm

of the form (6) where p, qER, Pk ~ 0, tkE[a, b] (k = 0, 1, . . . , m).

In the paper [2] the coeficients p, q, Pk are explicitly given while in [3]
the uniform convergence of the s~quence Gm was proved.

The following denotation will be of use to us:

(7)

3. In this part we shall prove a very simple theorem having large applications
in the theory of convex functions. Its proof is based on theorem 1.

Theorem 2 (On the positivity of linear operators).
operator A: C [a, b] --+ S (D) is linear and continuous.
t f-+f(t) the following implication

(8) fEK[a, b] ~ Af~O

is valid if and only if the following three conditions hold:

Let us assume that the
Then for every function

(9)

(10)

(11)

Aeo = 0,

Ael=O,

Aw(t, c)~O for every cE[a, b].

Proof. (i) Conditions are necessary. Let us assume that the implication (8)
holds for any function f and let us prove that the conditions (9), (10) and (11)
are valid then.
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(12)

Since eoE K [a, b] on the basis of the implication (8) it follows that

Aeo ~ O.

On the other hand we have - eoE K [a, b] so that we have

(13) - Aeo = A ( - eo) ~ 0

on the basis of the linearity of the operator A and on the basis of (8).
From (12) and (13) it follows that (9) holds.

Similarly, since e1EK[a, b] and -e1EK[a, b] we see that the following
inequalities hold respectively

(14)

and
(IS)

on the basis of linearity of the operator A and on the basis of the implica-
tion (8). In virtue of (14) and (15) we see that (10) is valid.

Since w(t, c)EK[a. b] for every cE[a, b] on the basis of implication (8)
the validity of (11) follows. This proves that the conditions (9), (10) and (11)
are necessary.

(ii) Conditions are sufficient. Let us assume that the conditions (9), (10)
and (II) are valid and let us prove that the implication holds true, for every
function fEK [a, b].

If fEK[a, b] then on the basis of the theorem I, there exist P, qER, Pk~O
and tkE [a, b], such that the sequence Gm of the form (6) satisfies the conditions

(16) lim Ii Gm-fll =0.
m-++oo

Since A, by the assumptions of the theorem, is a continuous operator,
on the basis of (16) the following relation

(17) lim IIAGm-Aflll=O
m---*+oo

is valid for every function fEK [a, b]. On the other hand, since the operator A
is linear, in virtue of (6) we have

(18)
m

AGm=pAel +qAeo+ L PkAw(t, tk)'
k~O

Using now assumptions (9), (10) and (11) it follows that

(19)
m

AGm= L PkAw(t, tk)~O
k~O

(m = I, 2, . . .)

because Pk ~ 0 (k = 0, I, . . . , m). On ,the basis of (17) and (19) we have

Af=A( lim Gm)= lim AGm~O
m-++oo m~+oo

for any function fE K [a, b].
Thereby the theorem 2 is proved.
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We shall often, in applications, use the entire family of operators instead
of one operator A. Namely, if {Ai IiEI} is a family of operators, where / is
an arbitrary index-set, a theorem, similar to theorem 2, could be stated for
this family.

Theorem 3. Let us assume that every operator Ai: C [a, b] -+ S (D), where / is'
an arbitrary index-set, is linear and continuous. Then for any function f and for
every iE/ the implication

(20) fEK[a, b] => AJ"SO

hold if and only if the following conditions are valid
(21) Aieo=O

~~ ~~=O
(23) Aiw(t, c) "SO for every cEra, b],

for all iE/.
The proof of this theorem is a direct consequence of theorem 2. We.

shall later, on examples, ~.how that theorem 3 is often more efficient than
theorem 2.

As it seems to us, one of the very important consequences of our
theorem 2 is the following theorem (f.ee theorem 4). This theorem provides an
entirely general principle to the "majorization of vectors" in terms of continu-
ous and linear operator~. This thee rem contains in a particular case the theorem
on the majorization of vectors (see, for example, [1] pp. 157-164.).

We will consider two operators A, B: C [a, b]-+ S (D). Operator A will
be said to majorize the operator B if the following conditions

(24) Aeo = Beo

(25) Aej = Bej

(26) Aw(t, c) "SBw(t, c) for every cEra, b]

a"e fulfil!ed, where the functions eo', ej and ware given by (7). The fact that
the operator A majorizes the operator B will be denoted by A»- B. The rela-
tion "S in (26) is defined in the second part of this paper.

Theorem 4 (On the majorization of linear operators). Let us assume that the'
operators A, B: C [a, b]-+ S(D) are linear and continuous.Then for every function
t ~ f(t) the implication
(27) fEK[a, b] => Af"SBf

is valid if and only if the operator A majorizes the operator B, i. e. if and only if

(28) A»-B.

The proof of this theorem immediately follows from theorem 2 with the
fact that the opcc'ator C = A - B is linear and continuous if the same proper-
ties are pm.sesed by the ope"ators A and B. On the other hand from theorem 4,.
theorem 2 follows assuming that B = 0 in theorem 4. Thus thee rems 2 and 4
are equivalent to each other.

In connection with the previous theorems we shall make here some remarks..
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REMARKS. 1° For a function /, continuous on the segment [a, b] we will say that it belongs
to the class K [a, b] (i. e. that it is concave on the segment [a. b]) if the function -

f belongs

to the class K [a, b].
It is easy to verify that the previous theorems continue to be valid if the class K is

substituted by the class K and if the relation;;;. is replaced by the relation ~ in the men-
tioned theorems.

2° Analogously to the previous theorems, the necessary and sufficient conditions can
be given that for every function f the implication

fEK [a, b] => Af;:£O

is valid, where A is a linear and continuous operator. It is sufficient to consider the ope-
rator -A instead of the operator A. The similar results can be obtained for the class j{

3° All the operators mentioned in the first part of this paper satisfy the conditions of
-linearity and continuity in a subspace S (D). In such a way we reach a conclusion that
-various known theorems of the theory of convex functions could be reduced to the same
principle and that on the other hand theorems 2 and 4 enable obtaining of the entirely new

"results from the theory of convex functions. This will be the topic of several forthcoming notes.

At the end this note, we shall quote another theorem which, analogously
to the previous ones, has large applications in the theory of convex functions.
~amely, we shall consider the operators A: C[a, b] x C[a, b]-+S(D) satisfying
the condition

A(Pl Ul +ql Vl' P2U2 +q2 V2) =PlP2A(ul' U2) +Pl q2A(ul' V2)

+P2qlA(vl' U2) +Wl q2 A (V l' V2)'

for all real numbers Pj' qjER (i= 1,2) and all real functions Uj,vjEC[a,b] (i= 1,2).
As it is customary such an operator will be called bilinear. A bilinear operator A
is said to be continuous if the operators Bf = A (f, g) and Cf = A (g, f) are

..continuous on C [a, b], for any function gE C [a, b]. It is verified immediately
that the foltowing theorem is valid.

theorem 5. Let A: C [a, b] x C [a, b] -+ S (D) be a bilinear and continuous operator.
Then, for every pair (f, g) of the functions the following implication

.(29) (f, g)EK[a, b] x K[a, b] => A(f, g)~O

is valid if and only if the following conditions hold

.(30)

{31)

A (ej, e)=O (i,j=O,I)

A (ej, w(t, c»=A(w(t, c), ej)=O

Jor every cEra, b] and i = 0, 1, and

(32)

Jor every pair (cl, C2)E [a, b] x [a, b].

The proof of theorem 5 is very similar to that of theorem 2 and that
is why it is omited here.
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REMARKS.4° Theorem 5 is equivalent to theorem 2. Namely, the conditions (30), (31) and (32)
can be, by a definite procedure, obtained from the conditions (9), (10) and (11).

5° It is easily seen that theorems 3 and 4 could be transfered to continuous bilinear
operators.

6° Theorem 5 can be easily stated even for multilinear operators.
7° Using the well known relation between convex and logarithmically convex functions

it is possible to obtain analogous theorems to that obtained in this paper for the class of
logarithmically convex functions.
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