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607. NOTES ON CONVEX FUNCTIONS II: ON CONTINUOUS
LINEAR OPERATORS DEFINED ON A CONE
OF CONVEX FUNCTIONS*

Petar M. Vasi¢ and Ivan B. Lackovié¢

0. In this paper a theorem (Theorem 2) is proved providing necessary and
sufficient conditions for the validity of (1) for an arbitrary convex function,
A being a linear and continuous operator. Theorems 3 — 5 are equivalent
forms of theorem 2 which are more suitable for applications. The applications
of the results obtained in this paper will be presented in a few forthcoming
notes which will be published under the same title.

1. A large number of theorems from the theory of convex functions are of
the from

M Af=0

where x> f(x) is a convex function and A a given linear operator. We must
emhasize, at the beginning, that we refer to the continuous function satisfying
the JeNSEN inequality on a closed and finite segment of the real straight line
(see [1] p. 17). On one hand a lot of properties of the class of convex
functions have form (1) and, on the other hand, the consequences of these
properties are also of the form (1). Roughly speaking, operators 4 appearing
in (1) are most often linear discrete operators, linear differential operators,
linear integal operators as well as their combinations (i.e. operators stemming
from the superposition of the previously derived operators). For the sake of
illustration we shall mention few examples.

Let nonnegative numbers p;(i=1, ..., n) be such that > pi=1 and let f
i=1
be a convex.function on segment [a, b]. It is well known that the following
inequality

@ f( z ’ xi) < z S

holds, for the arbitrary points x,&[a, b} (i=1, ..., n). If the points x; and the
weights p; are fixed then defining the operator A by

o) - g P —f(élp,- x,-)

inequality (2) takes form (1). This is an example of a linear discrete operator.
In this case we assume that » is a fixed natural number.

* Received January 20, 1978.
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It is well known that twice differentiable function f is convex if and
2

only if f*"=0. Assuming that A=(% the condition f' =20 gets form (1). This
X

is an example of a differential linear operator.

The majorization theorem (see [1] p. 126) supplies us with the necessary
and sufficient condition for validity of the inequality

1 1
@ [rix@)de< [r(y@)dr
0 0

for every convex function f. At present we shall consider the linear integral
operator A of the form

1 1
®) A= [ @) di- [ F(x@)) ar.
0 0

Using (5), condition (4) gets form (1).

Starting, thus, from these examples of linear operators (as well as from
several others not quoted here) we arrived at the conclusion that it would be
of interest to give the necessary and sufficient conditions for arbitrary linear
operator so that (1) holds for any convex function f.

In the present paper we shall give a thoorem relevent to the necessary
and sufficient conditions for (1) to be valid for the arbitrary convex function f,
as well as several equivalents of it, i.e. consequences. The proof of this theo-
rem of ours is based on papers by K. TopA [2] and T. Poroviciu [3]. As
far as we know in the literature relevant to convex functions such a theorem
was not explicitly stated, up to now, though some of its very particular cases
were mentioned in [2], [3] and [4].

_The applications of our theorem, i.e. some of the particular cases of
operator 4 will be presented in a few ‘“‘notes” from this series.

2. As customary, we shall denote by Cla, b] a set of all functions continuous
on the segment [a, b] (— o <a<b<< + ) (f is continuous from the right at a
and f is continuous from the left at »). The norm of a function ?+x ()= C]la, b]
will be defined by

il ¥||= max [x(#)].
ast=b
The sequence x,=x,(t)&C[a, b] will be assumed to converge towards
function x=x(t)EC|a, b] if lim | x,— x| =0.
n->4o

We shall further observe operators whose domain is the space Cla, b].
Let A be such an operator. The operator 4 will be considered as linear if

A(px+qy)=pAx+qAy

holds for each pair of real numbers p and ¢ and for each pair of functions
x=x(t), y=y(@®)eCla, b].
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Let DCR and let S(D) be one of the normed subspaces of the space
of all real functions defined on D, with the norm || x|, for x&S (D). For the
operator 4: € [a, b]—> S(D) we will say that it is continuous at the point
x,&Cla, b] if from the condition | x,—x,|l—>0 (n—+ ) it follows that
| Ax, — Ax,|l,— 0 (n— + o) for every sequences of points x,&C|a, b].

For the operator 4: Cla, b]— S(D) we shall write Ax=0 if Ax=F(t)=0
for every t& D, where x=x(t) is a given function from C/la, b).

The real function f will be said to be convex on [a, b] if the inequality

floty+(1=p) ) =pf (1) +(1-p) f(2)

is valid for every pair of points ¢, ,&][a, b] and for any p<[0, 1. The set
of all convex functions on [a, b] will be denoted by K[a, b]. It is obvious from
the foregoing that the inclusion K[a, b)JCCla, b] is valid (we consider only
those convex functions which are continuous from the right at the point a
and which are continuous from the left at the point b).

In the further work the following theorem will be used, which was proved
by K. Topa [2] and T. Popoviciu [3] and which reads:

Theorem 1. (a) Every function of the sequence

©6) Gn()=pt+q+ 3 pi|t—1t] m=12,...),
k=0

where tC[a, b]; p, qER; p. 20, t,&[a, b] (k=0,1, ..., m) is convex on [a, b].

(b) Every function f convex on [a, b] is the uniform limit of the sequence G,
of the form (6) where p, q<=R, p, =20, t,&[a, b] (k=0,1, ..., m).

In the paper [2] the coeficients p, g, p, are explicitly given while in [3]
the uniform convergence of the sequence G, was proved.

The following denotation will be of use to us:

@) e,(1)=1, e (t)=t, w(t,c0)=|t—c|.

3. In this part we shall prove a very simple theorem having large applications
in the theory of convex functions. Its proof is based on theorem 1.

Theorem 2 (On the positivity of linear operators). Let us assume that the
operator A: Cla, b)— S(D) is linear and continuous. Then for every function
t—f(t) the following implication

(®) fEK]a, b] > Af =0
is valid if and only if the following three conditions hold:
®) Ae, =0,

(10) Ade, =0,

(11) Aw (t, ¢} =0 for every cEla, b].

Proof. (i) Conditions are necessary. Let us assume that the implication (8)
helds for any function f and let us prove that the conditions (9), (10) and (11)
are valid then.
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Since e,&K|[a, b] on the basis of the implication (8) it follows that
(12) : Aey=0.
On the other hand we have —e¢,&K]|a, b] so that we have
(13) —Ade,=A(-¢€)=z0

on the basis of the linearity of the operator 4 and on the basis of (8).
From (12) and (13) it follows that (9) holds.

Similarly, since e,&K]a, b] and —e, &K]Ja, b] we see that the following
inequalities hold respectively

(14) Ae, 20
and
(15) —de,=A(-e)=z0

on the basis of linearity of the operator 4 and on the basis of the implica-
tion (8). In virtue of (14) and (15) we see that (10) is valid.

Since w(t, c)EK|a. b] for every c&[a, b] on the basis of implication (8)
the validity of (11) follows. This proves that the conditions (9), (10) and (11)
are necessary.

(ii) Conditions are sufficient. Let us assume that the conditions (9), (10)
and (11) are valid and let us prove that the implication holds true, for every
function f&K [a, b].

If f&Ka, b] then on the basis of the theorem 1, there exist p, g& R, p, =0
and ¢,&[a, b], such that the sequence G, of the form (6) satisfies the conditions
(16) - lim [G,—f]|=0.

m—+

Since A4, by the assumptions of the theorem, is a continuous operator,

on the basis of (16) the following relation

(17) lim || AG,,— Af]}, =0
m—>+ o

is valid for every function fE K [a, b]..On the other hand, since the operator 4
is linear, in virtue of (6) we have

a8 AG,, =pAe, +qde,+ > p Aw(t, 1,).
o)
Using now assumptions (9), (10) and (11) it follows that
(19) 4G, =3 pAw(t, ,)>0 m=1,2,...)
k=0

because p, =0 (k=0,1, ..., m). On 'the basis of (17) and (19) we have
Af=A( lim G,)= lim AG, =0

m—r-+ m—+ o

for any function fEK]|a, b].
Thereby the theorem 2 is proved.
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We shall often, in applications, use the entire family of operators instead
of one operator A. Namely, if {d4;|icI} is a family of operators, where I is.
an arbitrary index-set, a theorem, similar to theorem 2, could be stated for
this family.

Theorem 3. Let us assume that every operator A;: Cla, bj— S(D), where I is
an arbitrary index-set, is linear and continuous. Then for any function f and for-
every ic1I the implication

(20) fEK][a, b] > A,f=0

hold if and only if the following conditions are valid

(P2} A;e,=0

(22) Ae, =0

(23) Aw(t,c)z0 for every c¢&|a, b,
for all ic].

The proof of this theorem is a direct consequence of theorem 2. We-
shall later, on examples, show that theorem 3 is often more efficient than
theorem 2.

As it seems to us, one of the very important consequences of our
theorem 2 is the following theorem (see theorem 4). This theorem provides an
entirely general principle to the ‘“majorization of vectors” in terms of continu-
ous and linear operators. This thecrem contains in a particular case the theorem
on the majorization of vectors (see, for example, [1] pp. 157—164.).

We will consider two operators 4, B: Cla, b] - S(D). Operator A4 will
be said to majorize the operator B if the following conditions

(24) Ae, = Be,
(25) Ae, = Be,
(26) Aw(t, c)=Bw(t, ¢) for every c&la, b]

a-e fulfilled, where the functicns e,, ¢, and w are given by (7). The fact that
the operator 4 majorizes the operator B will be denoted by A4 > B. The rela-
tion = in (26) is defined in the second part of this paper.

Theorem 4 (On the majorization of linear operators). Let us assume that the:
operators A, B: C[a, b] — S(D) are linear and continuous. Then for every function
t> f(t) the implication

27 fEK]a, b} > Af=Bf
is valid if and only if the operator A majorizes the operator B, i.e. if and only if”
(28) A>B.

The proof of this theorem immediately follows from theorem 2 with the
fact that the operator C=A4— B is linear and continuous if the same proper-
ties are possesed by the operators 4 and B. On the other hand from theorem 4,
theorem 2 follows assuming that B=0 in theorem 4. Thus thecrems 2 and 4
are equivalent to each other.

In connection with the previous theorems we shall make here some remarks..
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ReMarks. 1° For a function f; continuous on the segment [a, 5] we will say that it belongs
-to the class K [a, b] (i.e. that it is concave on the segment [a. b]) if the function — f belongs
‘to the class K[a, b].

It is easy to verify that the previous theorems continue to be valid if the class K is
substituted by the class K and if the relation > is replaced by the relation < in the men-
‘tioned theorems.

2° Analogously to the previous theorems, the necessary and sufficient conditions can
be given that for every function f the implication

fEK a, b] = Af<0

4s valid, where A4 is a linear and continuous operator. It is sufficient to consider the ope-
Tator —A instead of the operator 4. The similar results can be obtained for the class K.

3° All the operators mentioned in the first part of this paper satisfy the conditions of
linearity and continuity in a subspace S(D). In such a way we reach a conclusion that
-various known theorems of the theory of convex functions could be reduced to the same
principle and that on the other hand theorems 2 and 4 enable obtaining of the entirely new
results from the theory of convex functions. This will be the topic of several forthcoming notes.

At the end this note, we shall quote another theorem which, analogously
to the previous ones, has large applications in the theory of convex functions.
Namely, we shall consider the operators A4: C{a, b] x C[a, b]— S (D) satisfying
‘the condition

APy + 4, Vs oty +4,v) =P P, AUy, ) +p, 4, Ay, vy)
+P, 4, Ay ) +w, 9, A(vy, v,),

for all real numbers p,, ;&R (i =1, 2) and all real functions u;, v,©C[a,b] (i =1, 2).
As it is customary such an operator will be called bilinear. A bilinear operator 4
is said to be continuous if the operators Bf=A(f, g) and Cf=A(g, f) are
<continuous on C/la, b], for any function g&Cla, b]. It is verified immediately
that the following theorem is valid.

“Theorem 5. Let A: C|a, bl x C[a, b] - S (D) be a bilinear and continuous operator.
Then, for every pair (f, g) of the functions the following implication

(29) (f; 9EK]a, b] x K[a, b] = A(f, )20
is valid if and only if the following conditions hold
430) Ae;, ¢)=0 (i, j=0,1)
YEDY) A(e, w(t, c))=A(w(t, ¢), ¢)=0
_for every ¢c<[a, b] and i=0, 1, and
32) Aw@, c), w(t, ¢,))=0

for every pair (c,, ¢,)E[a, b] x[a, b].

The proof of theorem 5 is very similar to that of theorem 2 and that
is why it is omited here.
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REMARKS. 4° Theorem 5 is equivalent to theorem 2. Namely, the conditions (30), (31) and (32)
can be, by a definite procedure, obtained from the conditions (9), (10) and (11).

5° 1t is easily seen that theorems 3 and 4 could be transfered to continuous bilinear
operators.

6° Theorem 5 can be easily stated even for multilinear operators.

7° Using the well known relation between convex and logarithmically convex functions
it is possible to obtain analogous theorems to that obtained in this paper for the class of
logarithmically convex functions.
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