606. ZEROS OF SUCCESSIVE DERIVATIVES OF A FUNCTION ANALYTIC AT INFINITY

R. P. Boas

Dedicated to Professor D. S. Mitrinović on his seventieth birthday
If a function f is analytic at 0 (and not a polynomial), its Maclaurin series must have infinitely many nonzero terms, so that an infinite number of its successive derivatives must fail to be zero at 0 , and hence must not have zeros in some neighborhood of 0 (the neighborhood depending on the derivative). There are many ways of quantifying this observation; for example, if f is analytic in $|z|<R$ and z_{n} is the zero of $f^{(n)}$ closest to 0 , there is a positive number G such that $\left|z_{n}\right| \geqq R G / n$ for an infinite number of values of n. The least upper bound of such numbers G is known as the Gontcharoff constant; its precise numerical value is not known, but it was shown by Buckholtz [1] to be equal to the Whittaker constant, which is involved in a similar problem for entire functions and has been studied more extensively.

Here I consider an analogous problem for functions that are analytic at ∞. Suppose that f is analytic at ∞ and not constant. What can be said about the finite zero of f of largest absolute value? It is not immediately clear that there is anything to say, since the problem is rather different from the original one, principally because the derivatives of $f(z)$ are not simply related to those of $f(1 / z)$. Moreover, differentiation does not reduce the influence of the leading terms of a power series in $1 / z$. It turns out that if z_{n} is the finite zero of $f^{(n)}(z)$ of largest absolute value, then $\left|z_{n}\right|$ is at most of order n, for all sufficiently large n (not just for a subsequence).

Theorem. Let f be analytic at ∞ and for $|z|>R$, and not constant, with $f(\infty)=0$. Let the Laurent series of $f($ about $\infty)$ be $\sum_{n=1}^{+\infty} b_{n} z^{-n-p}$, where p is a nonnegative integer and $b_{1}=1$, so that there is a positive $S(S \geqq R$ and $S \geqq 1)$ such that $\left|b_{n}\right| \leqq S^{n-1}$ for $n=1,2, \ldots\left(\right.$ since $\left.R=\lim \sup \left|b_{n}\right|^{1 / n}\right)$. Then there is a number c, depending only on p, such that outside a disk (center at 0) of radius $c S(n+p+1)$ each derivative $f^{(n)}(z)$ of sufficiently large order has no finite zero.

The example $f(z)=z^{-1}-z^{-2}$, for which $f^{(n)}(z)$ has a zero at $z=n+1$, shows that the radius cannot in general have order greater than $O(n)$.

When $|z|>S$ we have $f(z)=\sum_{j=1}^{+\infty} b_{j} z^{-j-p}, b_{1}=1,\left|b_{j}\right| \leqq S^{j-1}$. Then

$$
\begin{aligned}
(-1)^{n} f^{(n)}(z) & =\sum_{j=1}^{+\infty} b_{j} z^{-j-p-n}(j+p)(j+p+1) \cdots(j+p+n-1) \\
& =\sum_{j=1}^{+\infty} b_{j} z^{-j-p-n} \frac{(j+p+n-1)!}{(j+p-1)!}=\sum_{j=1}^{+\infty} b_{j} z^{-j-p-n}\binom{j+p+n-1}{n} n!.
\end{aligned}
$$

We shall certainly have $f^{(n)}(z) \neq 0$ if

$$
|z|^{-n-p-1}(p+n)!/ p!>\sum_{j=2}^{+\infty}\left|b_{j} z^{-j-p-n}\right|\binom{j+p+n-1}{n} n!,
$$

that is, if

$$
\begin{equation*}
1>\frac{p!n!}{(p+n)!} \sum_{j=2}^{+\infty}\left|b_{j} z^{-j+1}\right|\binom{j+p+n-1}{n} . \tag{1}
\end{equation*}
$$

With $m=j-1$, (1) reads $1>p!\sum_{m=1}^{+\infty}\left|b_{m+1}\right||z|^{-m} \frac{(m+p+n)!}{(m+p)!(p+n)!}$, and is implied (since $\left|b_{n}\right| \leqq S^{n-1}$) by

$$
\begin{equation*}
1>p!\sum_{m=1}^{+\infty}(S /|z|)^{m}\binom{m+p+n}{m} \tag{2}
\end{equation*}
$$

Now if (2) is true for some $|z|$ it is true for any larger $|z|$. Let us take $|z|=c S(n+p+1)$, where c is to be chosen so that (2) will hold. That is, we want to make

$$
1>p!\sum_{m=1}^{+\infty}(c(n+p+1))^{-m}\binom{m+p+n}{m}=p!\left(\left(1-\frac{1}{c(n+p+1)}\right)^{-(n+p+1)}-1\right) .
$$

Let $k=n+p+1$. We need

$$
\begin{equation*}
1>p!\left(\left(1-\frac{1}{c k}\right)^{-k}-1\right) \tag{3}
\end{equation*}
$$

For sufficiently large $k,\left(1-(c k)^{-1}\right)^{-k}$ is arbitrarily close to $e^{1 / c}$, and consequently (3) holds if c is chosen large enough so that $p!\left(e^{1 / c}-1\right)<1$, and k is sufficiently large. Hence (1) holds if c is large enough (depending only on p; it will suffice to have $c>2 p$!), and n is large enough (depending only on c, and hence on p). It follows that $f^{(n)}(z) \neq 0$ for $|z|>c S(n+p+1)$ when c and n are sufficiently large.

Added in proof. While this note was in press, C. L. Prather and J. K. Shaw pointedout that the theorem is a consequence of recults of D. V. Widder, Trans. Amer. Math. Soc. 36 (1934), 107-200; see pp. 172-173.

REFERENCE

1. J D. Buckholtz: Successive derivatives of analytic functions. Indian J. Math. 18 (1971), 83-88.

Northwestern University
Evanston, Illinois 60201, U.S.A.

