UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 602-- № 633 (1978), 47-49.

605. COMPARABLE L_p -NORMS OF SUBADDITIVE FUNCTIONS

Paul R. Beesack

Dedicated to Professor D. S. Mitrinović on the occasion of his seventieth birthday

In a paper published in 1969, F. C. HSIANG [3] proved the following result.

Theorem 1. (a) Let ψ be positive and monotone increasing and let w be positive on (0, A) where $0 < A \le +\infty$. Let $p \ge 1$ and suppose that $w(x) \le hx$ for 0 < x < Aand some constant h > 0. Then there exists an absolute constant M = M(h, p) > 0such that for all positive, measurable, subadditive functions φ on (0, A) we have

(1)
$$\left(\int_{0}^{A} \left(\frac{\varphi}{\psi}\right)^{p} \frac{\mathrm{d}x}{w}\right)^{1/p} \leq M \int_{0}^{A} \left(\frac{\varphi}{\psi}\right) \frac{\mathrm{d}x}{w}$$

(b) Moreover, if ψ is positive and monotone decreasing on (0, A) and there are constants c, k such that $0 < c < \frac{1}{2}$, k > 0, and $\psi(cx) \le k \psi(x)$ for 0 < x < A, then the inequality (1) is still valid for some M = M(c, k, h, p) > 0.

This is not quite the form in which the theorem of [3] was stated, but is what was actually proved. Theorem 1 is a generalization of an earlier theorem of R. P. GOSSELIN [1, Th. 1] who dealt with the special case w(x) = x, $\psi(x) = x^{\alpha}$, $\alpha \in \mathbb{R}$. In a later paper [2, p. 258] GOSSELIN noted, in a somewhat different context, that his result remained valid if the L_1 -norm appearing on the right side (of the special case) of (1) was replaced by the L_p -norm, where now $0 < q < p < \infty$.

It is the purpose of this note to show that Theorem 1 can itself be so extended, and to use this result to obtain a similar comparability result when $w(x) \le hx^{\beta}(\beta > 1)$ but A is finite.

Theorem 2. Let ψ , φ , w satisfy the hypotheses of Theorem 1 and let $0 < q < p < \infty$. In case (a) there exists an absolute constant M = M(h, p, q) > 0 such that

(2)
$$\left(\int_{0}^{A} \left(\frac{\varphi}{\psi}\right)^{p} \frac{\mathrm{d}x}{w}\right)^{1/p} \leq M\left(\int_{0}^{A} \left(\frac{\varphi}{\psi}\right)^{q} \frac{\mathrm{d}x}{w}\right)^{1/q},$$

while in case (b), (2) remains valid for some M = M(c, k, h, p, q) > 0.

Proof. In case (a) we choose any constant c, $0 \le c < \frac{1}{2}$, and let $I^q = \int_0^A (\varphi/\psi)^q w^{-1} dx$. As in [3], let $G = \left\{ x \in (0, A) : \varphi(x) \le \left(\frac{h}{\log (2(1-c))} \right)^{1/q} I \psi(x) \right\},$

and $E = (0, A) \setminus G$. Then

$$\int\limits_E \frac{\mathrm{d} x}{w} = \int\limits_E \left(\frac{\psi}{\varphi}\right)^q \left(\frac{\varphi}{\psi}\right)^q \frac{\mathrm{d} x}{w} < \frac{\log\left(2\left(1-c\right)\right)}{h I^q} \int\limits_E \left(\frac{\varphi}{\psi}\right)^q \left(\frac{\mathrm{d} x}{w}\right),$$

so

(3)
$$\int_{E} \frac{\mathrm{d}x}{w} < h^{-1} \log\left(2\left(1-c\right)\right).$$

As in [3], it follows that for every $x \in (0, A)$ there exists $y, z \in (cx, (1-c)x)$ $\cap G$ such that x = y + z. Since the proof in [3] contains some misprints which obscure the logic, we provide the proof here. Indeed, if the assertion is false then there exists $x_0 \in (0, A)$ such that for all $y \in (cx_0, (1-c)x_0)$ we have either $y \in E_0 = E \cap (cx_0, (1-c)x_0)$, or $z = x_0 - y \in E_0$, i.e. $y \in x_0 - E_0 = E_1$. Hence

 $(cx_0, (1-c)x_0) = E_0 \cup E_1.$

Since the sets E_0 , E_1 have the same Lebesgue measure, we have

$$(1-2c) x_0 = (1-c) x_0 - cx_0 = |E_0 \cup E_1| \le 2 |E_0|,$$

or $|E_0| \ge \left(\frac{1}{2} - c\right) x_0$, so that E_0 occupies at least half of the interval $(cx_0, (1-c)x_0)$. Since x^{-1} has larger values for $x < \frac{1}{2}x_0$ than for $x \ge \frac{1}{2}x_0$, it therefore follows that

$$\int_{\frac{1}{2}x_0}^{(1-c)x_0} x^{-1} \, \mathrm{d} \, x \leq \int_{E_0}^{(1-c)x_0} x^{-1} \, \mathrm{d} \, x.$$

Hence by (3),

$$\log(2(1-c)) = \int_{\frac{1}{2}x_0}^{(1-c)x_0} x^{-1} dx \le \int_{E_0} x^{-1} dx \le h \int_{E_0} \frac{dx}{w} < \log(2(1-c)),$$

and this contradiction proves the assertion.

Thus for each $x \in (0, A)$ we obtain

(4)
$$\varphi(x) = \varphi(y+z) \le \varphi(y) + \varphi(z) \le (h/\log[2(1-c)])^{1/q} I(\psi(y) + \psi(z))$$

for appropriate y, $z \in G \cap (cx, (1-c)x)$. Since y, $z \leq (1-c)x < x$ while ψ is nondecreasing in case (a), it follows that

$$\varphi(x) \leq 2(h/\log(2(1-c)))^{1/q} I \psi(x) \quad (0 < x < A),$$

so

$$\left(\frac{\varphi}{\psi}\right)^p \frac{1}{w} = \left(\frac{\varphi}{\psi}\right)^{p-q} \left(\frac{\varphi}{\psi}\right)^q \frac{1}{w} \leq \left(2^q h/\log\left(2\left(1-c\right)\right)\right)^{(p-q)/q} I^{p-q} \left(\frac{\varphi}{\psi}\right)^q \frac{1}{w}.$$

On integrating over (0, A) and taking p^{th} roots, we obtain (2) with

(5)
$$M = \left(2^{q} h / \log \left(2 \left(1 - c\right)\right)\right)^{1/q - 1/p}.$$

It is clear that in this case (a), we may take c = 0, and this gives the best choice for M in (5).

In case (b) we choose that value of $c \in (0, \frac{1}{2})$ such that $\psi(cx) \leq k \psi(x)$ on (0, A). From (4), since ψ is now nonincreasing and y, $z \ge cx$, we obtain

 $\varphi(x) \leq 2k (h/\log(2(1-c)))^{1/q} I \psi(x) \quad (0 < x < A).$

The inequality (2) follows as before, but with

(6)
$$M = ((2 k)^q h/\log[2 (1-c)])^{1/q-1/p}.$$

Corollary. Let w be positive on (0, A), where $0 < A < \infty$, and satisfy $w(x) \le hx^{\beta}$ for some constants h>0, $\beta>1$. Let $0 < q < p < \infty$ and let ψ , φ satisfy the hypotheses of Theorem 1. Then the inequality (2) holds with

(7a)
$$M = (2^{q} h A^{\beta-1} / \log 2)^{1/q-1/p} \qquad in \ case \ (a),$$

(7b)
$$M = ((2 k)^q h A^{\beta - 1} / \log [2 (1 - c)])^{1/q - 1/p} \quad in \ case \ (b).$$

The proof follows at once from the fact that $w(x) \leq h_1 x$ on (0, A), for $h_1 = h A^{\beta-1}$, together with formulas (5) with c = 0, and (6).

Note that a corresponding result holds for the case $w(x) \leq hx^{\beta} (\beta > 1)$. even if $A = \infty$, provided w is bounded on (0, A). For, if

$$K_w = \sup (w(x): 0 < x < A) < \infty$$

then again $w(x) \le h_2 x$ on (0, A) for $h_2 = K_w^{1-(1/\beta)} h^{1/\beta}$. It would be useful to prove a comparability theorem (even for the case $\psi(x) \equiv 1$) without the requirement that w be bounded on (0, A) for $\beta > 1$.

REFERENCES

- 1. R. P. GOSSELIN: Some integral inequalities. Proc. Amer. Math. Soc. 13 (1962), 378-384.
- 2. R. P. GOSSELIN: Integral norms of subadditive functions. Bull. Amer. Math. Soc. 69 (1963), 255-259.
- 3. F. C. HSIANG: An integral inequality. Portugaliae Math. 28 (1969), 63-66.

Carleton University Ottawa, Canada

4 Publikacije Elektrotehničkog fakulteta