605. COMPARABLE L_{p}-NORMS OF SUBADDITIVE FUNCTIONS

Paul R. Beesack

Dedicated to Professor D. S. Mitrinovic on the occasion of his seventieth birthday
In a paper published in 1969, F. C. Hsiang [3] proved the following. result.

Theorem 1. (a) Let ψ be positive and monotone increasing and let w be positive. on $(0, A)$ where $0<A \leqq+\infty$. Let $p \geqq 1$ and suppose that $w(x) \leqq h x$ for $0<x<A$ and some constant $h>0$. Then there exists an absolute constant $M=M(h, p)>0$ such that for all positive, measurable, subadditive functions φ on $(0, A)$ we have-

$$
\begin{equation*}
\left(\int_{0}^{A}\left(\frac{\varphi}{\psi}\right)^{p} \frac{\mathrm{~d} x}{w}\right)^{1 / p} \leqq M \int_{0}^{A}\left(\frac{\varphi}{\psi}\right) \frac{\mathrm{d} x}{w} . \tag{1}
\end{equation*}
$$

(b) Moreover, if ψ is positive and monotone decreasing on $(0, A)$ and there are constants c, k such that $0<c<\frac{1}{2}, k>0$, and $\psi(c x) \leqq k \psi(x)$ for $0<x<A$, then the inequality (1) is still valid for some $M=M(c, k, h, p)>0$.

This is not quite the form in which the theorem of [3] was stated, but. is what was actually proved. Theorem 1 is a generalization of an earlier theorem of R. P. Gosselin [1, Th. 1] who dealt with the special case $w(x)=x$, $\psi(x)=x^{\alpha}, \alpha \in \mathbf{R}$. In a later paper [2, p. 258] Gosselin noted, in a somewhat different context, that his result remained valid if the L_{1}-norm appearing on. the right side (of the special case) of (1) was replaced by the L_{p}-norm, wherenow $0<q<p<\infty$.

It is the purpose of this note to show that Theorem 1 can itself be so extended, and to use this result to obtain a similar comparability result when $w(x) \leqq h x^{\beta}(\beta>1)$ but A is finite.

Theorem 2. Let ψ, φ, w satisfy the hypotheses of Theorem 1 and let $0<q<p<\infty$. In case (a) there exists an absolute constant $M=M(h, p, q)>0$ such that

$$
\begin{equation*}
\left(\int_{0}^{A}\left(\frac{\varphi}{\psi}\right)^{p} \frac{\mathrm{~d} x}{w}\right)^{1 / p} \leqq M\left(\int_{0}^{A}\left(\frac{\varphi}{\psi}\right)^{q} \frac{\mathrm{~d} x}{w}\right)^{1 / q} \tag{2}
\end{equation*}
$$

while in case (b), (2) remains valid for some $M=M(c, k, h, p, q)>0$.

Proof. In case (a) we choose any constant $c, 0 \leqq c<\frac{1}{2}$, and let $I^{q}=\int_{0}^{A}(\varphi / \psi)^{q} w^{-1} \mathrm{~d} x$. As in [3], let

$$
G=\left\{x \in(0, A): \varphi(x) \leqq(h / \log (2(1-c)))^{1 / q} I \psi(x)\right\},
$$

and $E=(0, A) \backslash G$. Then

$$
\int_{E} \frac{\mathrm{~d} x}{w}=\int_{E}\left(\frac{\psi}{\varphi}\right)^{q}\left(\frac{\varphi}{\psi}\right)^{q} \frac{\mathrm{~d} x}{w}<\frac{\log (2(1-c))}{h I^{q}} \int_{E}\left(\frac{\varphi}{\psi}\right)^{q}\left(\frac{\mathrm{~d} x}{w}\right),
$$

so

$$
\begin{equation*}
\int_{E} \frac{\mathrm{~d} x}{w}<h^{-1} \log (2(1-c)) \tag{3}
\end{equation*}
$$

As in [3], it follows that for every $x \in(0, A)$ there exists $y, z \in(c x,(1-c) x)$ $\cap G$ such that $x=y+z$. Since the proof in [3] contains some misprints which obscure the logic, we provide the proof here. Indeed, if the assertion is false then there exists $x_{0} \in(0, A)$ such that for all $y \in\left(c x_{0},(1-c) x_{0}\right)$ we have either $y \in E_{0}=E \cap\left(c x_{0},(1-c) x_{0}\right)$, or $z=x_{0}-y \in E_{0}$, i.e. $y \in x_{0}-E_{0}=E_{1}$. Hence

$$
\left(c x_{0},(1-c) x_{0}\right)=E_{0} \cup E_{1} .
$$

Since the sets E_{0}, E_{1} have the same Lebesgue measure, we have

$$
(1-2 c) x_{0}=(1-c) x_{0}-c x_{0}=\left|E_{0} \cup E_{1}\right| \leqq 2\left|E_{0}\right|
$$

or $\left|E_{0}\right| \geqq\left(\frac{1}{2}-c\right) x_{0}$, so that E_{0} occupies at least half of the interval $\left(c x_{0}\right.$, $\left.(1-c) x_{0}\right)$. Since x^{-1} has larger values for $x<\frac{1}{2} x_{0}$ than for $x \geqq \frac{1}{2} x_{0}$, it therefore follows that

$$
\int_{\frac{1}{2} x_{0}}^{(1-c) x_{0}} x^{-1} \mathrm{~d} x \leqq \int_{E_{0}} x^{-1} \mathrm{~d} x .
$$

Hence by (3),

$$
\log (2(1-c))=\int_{\frac{1}{2} x_{0}}^{(1-c) x_{0}} x^{-1} \mathrm{~d} x \leqq \int_{E_{0}} x^{-1} \mathrm{~d} x \leqq h \int_{E_{0}} \frac{\mathrm{~d} x}{w}<\log (2(1-c)),
$$

and this contradiction proves the assertion.
Thus for each $x \in(0, A)$ we obtain

$$
\begin{equation*}
\varphi(x)=\varphi(y+z) \leqq \varphi(y)+\varphi(z) \leqq(h / \log [2(1-c)])^{1 / q} I(\psi(y)+\psi(z)) \tag{4}
\end{equation*}
$$

for appropriate $y, z \in G \cap(c x,(1-c) x)$. Since $y, z \leqq(1-c) x<x$ while ψ is nondecreasing in case (a), it follows that

$$
\varphi(x) \leqq 2(h / \log (2(1-c)))^{1 / q} I \psi(x) \quad(0<x<A),
$$

so

$$
\left(\frac{\phi}{\psi}\right)^{p} \frac{1}{w}=\left(\frac{\varphi}{\psi}\right)^{p-q}\left(\frac{\varphi}{\psi}\right)^{q} \frac{1}{w} \leqq\left(2^{q} h / \log (2(1-c))\right)^{(p-q) / q} I^{p-q}\left(\frac{\varphi}{\psi}\right)^{q} \frac{1}{w} .
$$

On integrating over ($0, A$) and taking $p^{\text {th }}$ roots, we obtain (2) with

$$
\begin{equation*}
M=\left(2^{q} h / \operatorname{lcg}(2(1-c))\right)^{1 / q-1 / p} \tag{5}
\end{equation*}
$$

It is clear that in this case (a), we may take $c=0$, and this gives the best choice for M in (5).

In case (b) we choose that value of $c \in\left(0, \frac{1}{2}\right)$ such that $\psi(c x) \leqq k \psi(x)$ on ($0, A$). From (4), since ψ is now nonincreasing and $y, z \geqq c x$, we obtain

$$
\varphi(x) \leqq 2 k(h / \log (2(1-c)))^{1 / q} I \psi(x) \quad(0<x<A) .
$$

The inequality (2) follows as before, but with

$$
\begin{equation*}
M=\left((2 k)^{q} h / \log [2(1-c)]\right)^{1 / q-1 / p} . \tag{6}
\end{equation*}
$$

Corollary. Let w be positive on ($0, A$), where $0<A<\infty$, and satisfy $w(x) \leqq h x^{3}$ for some constants $h>0, \beta>1$. Let $0<q<p<\infty$ und let ψ, φ satisfy the hypotheses of Theorem 1. Then the inequality (2) holds with

$$
\begin{array}{cl}
M=\left(2^{q} h A^{\beta-1} / \log 2\right)^{1 / q-1 / p} & \text { in case }(\mathrm{a}), \tag{7a}\\
M=\left((2 k)^{q} h A^{\beta-1} / \log [2(1-c)]\right)^{1 / q-1 / p} & \text { in case }(\mathrm{b}) .
\end{array}
$$

The proof follows at once from the fact that $w(x) \leqq h_{1} x$ on $(0, A)$, for $h_{1}=h A^{\beta-1}$, together with formulas (5) with $c=0$, and (6).

Note that a corresponding result holds for the case $w(x) \leqq h x^{\beta}(\beta>1)$, even if $A=\infty$, provided w is bounded on ($0, A$). For, if

$$
K_{w}=\sup (w(x): 0<x<A)<\infty
$$

then again $w(x) \leqq h_{2} x$ on ($0, A$) for $h_{2}=K_{w}^{1-(1 / \beta)} h^{1 / \beta}$. It would be useful to prove a comparability theorem (even for the case $\psi(x) \equiv 1$) without the requirement that w be bounded on $(0, A)$ for $\beta>1$.

REFERENCES

1. R. P. Gosselin: Some integral inequalities. Proc. Amer. Math. Soc. 13 (1962), 378-384.
2. R. P. Gosselin: Integral norms of subadditive functions. Bull. Amer. Math. Soc. 69 (1963), 255-259.
3. F. C. Hsiang: An integral inequality. Portugaliae Math. 28 (1969), 63-66.

Carleton University

Ottawa, Canada

