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603. EQUI-AFFINITIES IN THREE-DIMENSIONAL SPACE

O. Bottema

Dedicated to D. S. Mitrinovic on the occasion of his seventieth birthday.

Cher ami, nous ne nous sommes jamais rencontres. Je ne connais ni
votre voix, ni vos circonstances personnelles, ni votre conception de la vie.
Mais pendant plusieurs annees notre communication par ecrit a transporte de
Belgrade a Delft, alIer et retour, beaucoup de theoremes, de questions, de pro-
positions et surtout d'inegalites. Cette correspondance a atteint son apogee
lorsque vous m'avez invite a joindre votre cenacle de mathematicicns doues et
actifs qui, sous votre direction, ont compile une colIection (je m'exuse: la
colIection) systematiquement arrangee, des inegalites de la geometrie plane,
publiee en 1969 comme Geometric Inequalities.

Notre amitie scientifique a pour moi une valeur tres importante; plu-
sieurs fois mes pensees se sont envolees vers vous et ma fantaisie vous a place
a votre bureau, entoure par des centaines de livres et de journaux mathema-
tiques, ou en discutant avec vos eleves qui sont devenus vos colIaborateurs et
vos amis.

Cher MITRINOVIC,en vous remerciant pour tout ceque vous avez realise dans
notre science, j'ai tache d'exprimer mes sentiments chaleureux pour votre personne
non pas au moyen de la lingua franca de nos jours, mais par I'instrument de
la culture latine pour laquelIe vous avez une si profonde admiration.

1. Introduction. In the plane and in three-dimensional space the folIowing
theorem is welI-known: any Euclidean displacement may be written as the pro-
duct of two line reflections. It can be applied for instance to develop an ele-
gant method to study three positions theory in Euclidean kinematics. The ref-
lection has an analog in affine geometry. For the affine space such a transfor-
mation R (m; U) is defined as folIows. Let a line m, the mirror, and a plane
V, the direction plane, be given; m and V are not parallel. If P is an arbitrary
point, V' the plane through P parallel to V, S its intersection with m, then
the point P' corresponding to P is on the ray PS, such that PS + SP' = O.
Obviously R2 = I, the unit transformation; furthermore R is volume-preserving.
The product T = R2 RI of two reflections is an affine, volume-preserving tran-
sformation, an equi-affinity. The question arises whether any equi-affinity can
be factorized as the product of two reflections. RUTH STRUIK [1] studied
this problem long ago by the methods of synthetic geometry. Her interesting
and somewhat surprising results are: the property is valid for the analogous
problem in the plane, but it does not hold in space. She added the positive
theorem: an equi-affinity in space is always the product of three reflections.
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In the following note we consider, by analytical means, all possible products
T = RzRl' with Ri = (mi; Ui), i = 1, 2 and study the properties of T. It will be
seen that the set T does not cover all equi-affinities, which confirms RUTH
STRUIK'Sstatement. We distinguish four cases: 1. the mirrors ml' mz are skew
lines; II. ml and mz intersect; III. ml and mz are parallel; IV. ml and mz coincide.

2. The mirrors ml, mz are skew lines. We introduce an affine coordinate system
OXYZ as follows. We take OX and OY parallel to ml and mz respectively.
If the direction planes UI, Uz have a line of intersection s, not parallel to
OXY, we take as OZ the (unique) line, parallel to s and intersecting ml and
mz at £1 and £z; let 0 be the midpoint of £1 £z, The direction plane Ui,
which we can always take through 0, has the equation Aix+Biy=O, (i= 1,2).
As Ui is .not parallel to mi we have Al :;60, Bz:;60, hence we may suppose
Al =Bz= 1.
Summing up we have

ml: y=O, z=d;
(2.1 )

mz: x=O, z= -d;
with d:;60.

We derive the formulas of the reflection RI (ml; UI). Let P = (xo' Yo' zo)' then

Ut' has the equation x+BIy=xo+Blyo; for SI = (xl' Yl' Zl) we have XI =xo+

+ BIy, YI = 0, Zl = d. The ray PSI is represented by X = (xo + Blyo + AXO)/(1+ A),

Y = A Yo/(1 + A), z = (d + AZO)/(1 + A); the points P, SI and the point at infinity

correspond to A= 00, A= 0 and A= - 1. In view of PSI + SI P = 0, P' corres-

ponds to A= - ~. Hence we obtain for the reflection RI:
2

(2.2) X' =x+2BIy, y' = -y, z' = -z+2d.

In the same way we have for Rz:

(2.3) x'= -X, y'=2Azx+y, z' = - z - 2 d.

From (2.2) and (2.3) the equi-affinity T = Rz RI follows:

(2.4)

In discussing the type of T we shall restrict ourselves to the determination of
its invariant points. As d:;60 there are no finite invariant points.

Those in the plane V at infinity satisfy the linear homogeneous equations

(2.5)

which have only a solution if

(2.6)

The discriminant of the quadratic factor is D = 4 AzBI (Az BI - 1).
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As U1 and Uz are not parallel we have Az BI =F 1. If AzB]7~ 0, (that means: UI
is not parallel to mz, Uz not parallel to ml) we have D =F0, which implies
that (2.6) has three distinct roots: 1.0= 1, and AI' Az either real or conjugate
im~ginary (with AlAz= 1).

Hence there are three distinct invariant points in V. For 1.= 1 we have the
point Qo (0, 0, 1) that is the point at infinity of s. For A= Al and 1.= Az we
obtain the points QI and Qz (distinct, real or imaginary) whose coordinates
satisfy z = 0, the line I at infinity of the plane W parallel to ml and mz.
Summing up we have the following case

la. UI and Uz are not parallel; their line of intersection s is not parallel to W;
U1 is not parallel to mz, Uz is not parallel to mI,
There are no finite invariant points. Those in V are the vertices of a triangle
QoQI Qz; Qo is on s, QI' Qz are on W.
We suppose now D = 0, that is Az BI = 0, which implies Al= Az= - 1. 1.=1.0
gives us once more the invariant point Qo' If Az=F0, Bl = 0 the only other
invariant point is (0, 1, 0); for Az = 0, B I=F0 it is (1, O. 0). Hence our case is

lb. UI and Uz are not parallel; their intersection s is not parallel to W, UI is
parallel to mz, but Uz is not parallel to mI, There are no finite invariant
points. There are two invariant points in V, the point Qo and the point QIZ'
the intersection of I and the plane UI. We have a similar case if Uz is parallel
to ml, but UI not parallel to mz; the point QIZ is now the intersection of I
and UZ'
If Az = Bl = 0 it follows from (2.5) with 1.= - 1, that all points with z = 0 are
solutions. Hence the case

Ie. UI and Uz are not parallel, s is not parallel to W, UI and mz are parallel
and so are Uz and mI, There are no finite invariant points, those in V are Qo
and all points of I.

If UI and Uz are parallel then s is not determined. U (Up Uz) cannot be pa-
rallel to W (because Ui and mi are not parallel). We take now OZ parallel
to any line of U, not parallel to W. Completing the coordinate system as be-
fore implies that (2.1) and therefore (2.4) are still valid, but with the condi-
tion AzBI = 1. The equation (2.6) has then three equal roots 1.0= Al= Az= 1.
A solution of (2.5) is then any point satisfying x+Bly=O (or, what is the
same thing, Az x + y = 0). Hence our next case is

Id. UI and Uz are parallel. There are no finite invariant points. Those in V
are all points on the intersection of U and V.

There is only one more case: the intersection s of UI and Uz is parallel to W;
the equations (2.1) do not hold. We take the coordinate system such that

m1: y=O, z=d;
(2.7)

mz: x=O, z= -d;
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In an analogous way as before we obtain

RI :x' =x+ 2 qp-l y+ 2r1P-1 z-2rIP-Id, y' = - y,

Rz:x'= -x, y'=2pq-Ix+y+2rzq-Iz+2rzq-Id,

z' = - z + 2 d,

z' = - z - 2 d,
and

(2.8)

RzRI: x' = -x- 2qp-1 Y - 2 rlP-1 z+ 2 rIP-Id,

y' = 2pq-1 x+ 3y+ 2 (2rl - rz) q-l z- 2 (2'1 - 3 rz) q-1d,

z' = z - 4 d.

As before there are no finite invariant points. The eigenvalues of the matrix
of the linear terms of (2.8) are seen to be Ao= Al= Az= 1. Invariants points in
V must satisfy the equations PX+qY+'IZ=O and px+qy+(2rl-rZ)z=0; as
rI=I-rz their only solution is (q, - p, 0). We have arrived at:

Ie. VI and Vz have the intersection s, parallel to W. There are no finite inva-
riant points; there is one in V: the point at infinity of s (which is on I).
We note that in all cases I if s exists, its point at infinity is an invariant
point; this can even be said to hold in Id, where s is any line of V. A second
remark: there is always at least one invariant point on I, the line at infinity
of W.

3. The mirrors mp mz are intersecting lines. We can make use of the same
coordinate systems as for case I, the only difference being that we have now
d = O. Hence T = Rz RI is again given by (2.4) and (2.8) respectively. We dis-
tinguish the same subcases as for I. As d does not appear in the linear terms
our first conclusion is: for all subcases of II, the invariant points at infinity
are the same as for the corresponding subcases of I. But there are now finite
invariant points as well. They are the solutions of the equations x' = x, y' = y,
z' = z. The results are

IIa. All points with x = y = 0, that means all points of s.

IIb. Az=I-0, BI = 0; or Az = 0, BI =I-0, once more the points of s.

IIc. Az = BI = 0: the points of s.

IId. VI//VZ: all points of the plane V, with equation x+Bly=O (or Azx+y=O);
that are all points of the (now undetermined) intersection s.

IIe. sf/V: all points of px+qy=z=O, that means all points of s.
Summing up we have: In every subcase the finite invariant points are those of s.

4. The mirrors ml, mz are parallel lines. We take their plane W as z = 0, and
OY parallel to ml and mz. If VI, Vz have an intersection s, not parallel to
W, we obtain for a suitable coordinate system:

(4.1)
ml :x-a=z= 0; V I : Al x + y = 0,

mz :x+a=z=O;
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We obtain

Ri : x' = - x + 2 a, y' = 2 Ai x+ y-2Ai a, z'= -z,
(4.2)

Rz:x' = -x- 2a, z'= -z,

and therefore

(4.3) RzRi :x' =x-4a, z'=z.

This implies that (in view of a#O) there are no finite invariant points. For
those in V we have 1..0= Ai= Az= 1 and it follows that all points of the plane
.x = 0 are invariant. Hence

IlIa. Ui and Uz have the line of intersection s, not parallel to W. There are
no finite invariant points; those in V are all points on its intersection with a
plane parallel to s and mi.
If Up Uz are parallel we can again make use of (4.1), but now with Ai =Az.
From (4.3) it follows:

Illb. The direction planes are parallel. No finite invariant points. All points of
V are invariant.
If the intersection s of Ui, Uz is parallel to W a suitable coordinate system
_gives us

mi :x-a=z=O;
(4.4)

mz :x+a=z=O;

with a#O, rl #rz, q=FO.

After some algebra we obtain

(4.5) z'=z.

This gives us the case:

IIIc. The intersection s of UI, Uz is parallel to W. There are no finite invariant
points. Those in V satisfy z = 0, they are the points at infinity of the plane W.

5. The mirrors ml, mz coincide. The plane W is now undetermined, it can be
any plane through m. We can still make use of (4.1) but now with a = O. If
s exists it cannot be parallel to W, because UI and Uz are not parallel to m.
From (4.3), with a = 0 it follows that there are only two subcases:

IVa. UI and Uz have the intersection s. All points finite and infinite, of the
plane x = 0, that is the plane through sand m, are invariant.

IVb. UI and Uz are parallel. All points of the space are invariant. We could
expect this because Rz = Rl and Rlz = I.

(). Conclusion. In the preceding sections all possible pairs of affine line-reflec-
tions Ri(mi; Ui), i= 1,2, have been considered and their product T=RzRp an
equi-affinity, has been discussed. For any T we determined the invariant



MI Mz MI Mz

Ia. [2 1 1], [111] IIa. [(11) 1 1], [1 1 1]
b. [2 2], [2 1] b. [2 (I 1)], [2 1]
c. [2 (11)], [I (II)] c. [(I 1)( 11)], [1(11)]

d. [(2 2)], [(2 1)] d. [(2 1 1)], [(2 1)]

e. [4], [3] e. [(3 1)], [3]

IlIa. [(3 1)], [(2 1)] IVa. [(2 1 1)], [(2 1)]

b. [(2 1 1)], [(1 1 1)] b. [[1 1 1 1)], [(1 1 1)].
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points; invariant lines and planes could have been found by a similar proce-
dure. The various transformations T belong to different types, but the most
general equi-affinity (with the canonical representation x' = kl x, y' = kzY, z' = k3 z,
with distinct numbers ki, satisfying kl kz k3 = 1) is not among them. It has four
invariant points, the vertices of a tetrahedron, with one finite vertex and three
at infinity. To the negative conclusion that not all equi-affinities can be fac-
torized in the way described, the lists of the sections 2, 3, 4, 5 add a survey
of those types of (special) equi-affinities for which such a factorization is
possi ble.

7. An algebraic method. An affinity is represented by

(7.1)

x' = all x+ a\2Y + a13z+ bl,

y' = aZIx+ azzy+aZ3z + bz,

z' =a31x+a32y+a33z+b3,

and it is an equi-affinity if Iau I= 1 We can extend (7.1) to a projectivity if
we introduce homcgeneous coordinates and add the line w' = w. Two matrices
correspond to (7.1): the 4 x 4 matrix MI of the projective transformation and
the 3 x 3 matrix Mz = II au II, which expresses the projective transformation in
the plane V at infinity. It is immediately seen that A= 1 is an eigenvalue of
MI, and moreover that the eigenvalues of MI are A4= 1 and the eigenvalues

AO'Ai' Az of Mz. But (2.4) and (2.8) show that for a suitably chosen coordi-
nate system we have for the product Rz RI : a31= a3z= 0, a33= 1, which implies
that one eigenvalue of Mz is Ao= 1. Hence a product Rz Rp considered as a
projective transformation of the space, has (at least) two equal eigenvalues and
therefore cannot be one of the general type.
Two projectivities are equivalent if their matrices M and M' are equivalent,
which means that a matrix A exists such that M' = A -I MA. For the equiva-
lence of M and M' it is not only necessary that they have the same set of
eigenvalues, but moreover that their elementary divisors are the same, which
results in Ak being a common (multiple) eigenvalue, the matrices M - AkI and
M' - AkI having the same rank. This theory leads to an aJgebraic classification
of projectivities at which every type is characterized by its so-called symbol
of SEGRE.For the sake of completeness we give a list of these symbols, for MI
and Mz, corresponding to the various types of equi-affinities discussed in the-
preceding sections.
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We remark that all (six) types of projective transformations in V appear in
our scheme. But those in the space as a whole are restricted to ten out of
the fourteen types which are possible. The equi-affinities of the types [l 1 1 1],
[3 1], [(2 1) 1] and [(1 1 1) 1] cannot be written as the product of two affine
line-reflections.
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