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585. THEOREMS ON NONLINEAR SUPERPOSITIONS:
THE GENERAL FIRST ORDER EQUATION*

Vigjko Lj. Koci¢
0. Denote by S(E) the set of all solutions of partial differential equation
(E). If
u, veS(E) implies F(u, vVES(E),
the function F is called a ,,connecting function* for (E). It defines a nonlinear
superposition for (E).
In paper [1] J. D. KeCki¢ found nonlinear superpositions for the equations

0.1) aU,+bU,+cU=0,
0.2) aU, +bU,+cU+d=0,
(0.3) aU,+bU,+coU)=0,

where a, b, ¢, d are functions of x, y and ¢ is a given function. His result reads:

For equations (0.1), (0.2), (0.3) nonlinear superpositions are given by
dF

F(u,v):ufe—), Flwn=utalr—u, f@(F):f:gt)Jrf( @d(VV)—fcpttt))

respectively, where « is an arbitrary constant and f is an arbitrary function.
In this paper we consider the more general equation

(Ep) U,=2U,, U, x, »),

where @ is a twice differentiable function, and give a set of sufficient and
necessary conditions such that the implication

D u, vES(E;) implies F(u, v)c'S(EO)

is valid, where F is a differentiable function.

REMARK. We consider equation (E,) instead of the general equation
0.4) D WU,, U, U, x, »)=0

for technical reasons. Similar conclusions can be obtained for equation (0.4).

1. Theorem. A differentiable function F=F (u, v) is a connecting function
for (E,) if and only if"

(i) equation (E)) is of the form
(E) gu W, x, y) @U,+bU,)+cgU, x,»)=0

where a, b, ¢ are functions of x, y and g is a differentiable function;

* Presented April 5, 1977 by D. S. MrtriNovi¢ and J. D. KECKiC.
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(ii) there exist a differentiable function f such that:

g, x, y))
(u, x, y)

(1.1) wxwgmxwd

g, x, y))

(1.2) 8 (F, x, y) =g, (4, x, y)f< W, x, )

(g(v X, ¥)

cw )

) g, x, y))

(gx(v X ¥)— & (U, x, ¥
&, x, )

g, x, y))

13 g Ex0=gwx (L0

i &8W, X, ) g, x, y))
L fr (S v, X, u, x, y) ———22
/ (g(u, x, y)) (gy ( N =& » g, x, )

Proof. 1° Sufficient conditions. Let u, v&S (E)).

Differentiating (1.1) with respect to x and y and using (1.2) and (1.3),
we find

(1.9 gr(F, x, y) (Fu,+F,v) =g, x, u, f
(0 - pyu E D
g, x, 5)
and
(1.5) gr(F, x, ) (Fu,+Fv)=g,, x, pu,f
’ Y g xy)
+f (gv v x, v, g.(u, x, y)u, o y)) .

Using (1.1), (1.4) and (1.5), we get that F=F(u, v) is also a solution of
equation (E,), i.e. F is a connecting function for (E,), which proves the first
part of the theorem.

- 2° Necessary conditions. Let u, v& S (E,) and (I) holds, i.e. let F(u, v)& S (E)).
Then we have u, — (I)(uy, U, X, 1), v, =®W,,v,x, ), F,=F,u +F,v.=0(F,,F,x,y)
and

(1.6) F,Oo@w, ux,»+F0(,,v,x,»)=®F,u,+Fv,, F, x,y).
Differentiating (1.6) with respect to u, and v, we get

PO, F %)
OF?

(1.7) = 0.

Hence
(1.8) D@, 1, x, =4, x,y) t,+B({,, X, ¥),

where A and B are arbitrary functions of 7,, x, y.
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Substituting (1.8) into (1.6), we find

b s
(1.9) AW, %, 9) =A@, %, )= A(F, x, )= -8,
a(x,y)
where a and b are arbitrary functions of x and y.
Also we have
(1.10) F,B(u, x, y)+ F, B(v, x, y) = B(F, x, y).
Putting
xy» £xy)
1.11 Bt,x,y:—[;__._
( ) ( ) a(x, y) gt(t’ X, y)
into (1.10), we get
(1.12) g Xy p i g%,y g xy)

gu(u’ x,y) “ gv(V, X, y) v gF(F’ x y) '

Also, from (1.8) and (1.11) we obtain that equation (E,) is of the form
(E)), i.e. the condition (7) is fulfiled.
Furthermore, the general solution of equation (1.12) is given by

(1.13) g(F, x, ») =g (u, x,y)f(g(u )

where f is.an arbitrary differentiable function.
Differentiating (1.13) with recpect to x and y, we get

(1.14)  gp(F, x, ) F,+g. (F, x, )= (g, (u, x, y)u,+g, (u, x, »))f

EACED))

(8., x, Y)u,+g, U, x, y))
g (u, x, )

+f (g, (0, X, P vyt ge (s X, 1)) —
and

(115) gf"(Fs X, y)Fy+gy(F’ X, y):(gu(u9 X5 y)uy+gy(u’ X, y))f

A O R ) A IR S LA ACE )R

Since F(u, vy&S(E|) we have g.(F, x, y) (aF,+bF))+g(F, x, y)=0.

From the above and (1.13), (1.14), (1.15) we obtain (1.2) and (1.3).

All connecting functions for equation (E,) may be determined from (1.13),
(1.2), (1.3). This means that F=F(u, v) is a connecting function for (E,) if and

only if there exists a function f such that (1.1), (1.2), (1.3) are valid. This
completes the proof.

2. REMARKS. 1° Theorem can be formulated in the following way:
The only first order partial differential equation which has a connecting function of
the form F(u, v) is of the form (E)).

F=F(u,v) defines a nonlinear superposition for (E,) if and only if there exists diffe-
rentiable function f such that (1.1), (1.2) and (1.3) holds.
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2° Let g(t, x, y)=t+d[c (d is a function of x, y; d/c is not a constant). Then (E,)
becomes

2.1 aU,+bU,+cU+d=0.
In this case (1.1) takes the form

- F dm o d v+(dfc)
( .:.) (u, V)+7*<u+*c—>f(u+(d/c)>

and from (1.2) and (1.3) it follows
2.3) I=f()+f () (1—0),

where f=-- ——.
u+(d/c)

The general solution for equation (2.3) is f(t)=a(t—1)+1 where « is an arbitrary
constant.

Thus the nonlinear superposition for equation (2.1) is defined by F(u, v) =u+ o (v—u).
This result was also obtained by J. D. KeCKIC in paper [1].
3° In the case when g (¢, x, ») =g () we have the equation
2.4 &' (WU) (@U,+bU)+cg (U)=0.
For this equation nonlinear superposition is defined by
g
eFam-s@s(S0),
& @)
where f is an arbitrary function.
. . o g
Equation (0.3) reduces to equation (2.4) after the substitution (P(U):’—EU; , and our
&g
result reduces to result of J. D. KeCki¢, for the equation (0.3).

4° Let g(t, x, ¥)=g (@) +d/c (d is a function of x and y such that d/c is not a
constant). Then we have the equation

& (U) @U,+bU)+cg (U)+d=0
for which the nonlinear superposition is defined by

g(F W) =g W) +o(g®—gw),
where o is an arbitrary constant.

, 3. We shall return to this topic and shall, in particular, investigate second
order equations in an other paper.
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