585. THEOREMS ON NONLINEAR SUPERPOSITIONS:

 THE GENERAL FIRST ORDER EQUATION*Vlajko Lj. Kocic
0. Denote by $S(E)$ the set of all solutions of partial differential equation (E). If

$$
u, v \in S(E) \quad \text { implies } \quad F(u, v) \in S(E)
$$

the function F is called a ,,connecting function" for (E). It defines a nonlinear superposition foi (E).

In paper [1] J. D. Kečkić found nonlinear superpositions for the equations

$$
\begin{align*}
& a U_{x}+b U_{y}+c U=0, \tag{0.1}\\
& a U_{x}+b U_{y}+c U+d=0, \tag{0.2}\\
& a U_{x}+b U_{y}+c \varphi(U)=0, \tag{0.3}
\end{align*}
$$

where a, b, c, d are functions of x, y and φ is a given function. His result reads:
For equations (0.1), (0.2), (0.3) nonlinear superpositions are given by $F(u, v)=u f\left(\frac{v}{u}\right), \quad F(u, v)=u+\alpha(v-u), \quad \int \frac{\mathrm{d} F}{\varphi(F)}=\int \frac{\mathrm{d} u}{\varphi(u)}+f\left(\int \frac{\mathrm{~d} v}{\varphi(v)}-\int \frac{d u}{\varphi(u)}\right)$ respectively, where α is an arbitrary constant and f is an arbitrary function.

In this paper we consider the more general equation
(E_{0})

$$
U_{x}=\Phi\left(U_{y}, U, x, y\right),
$$

where Φ is a twice differentiable function, and give a set of sufficient and necessary conditions such that the implication

$$
\begin{equation*}
u, v \in S\left(E_{0}\right) \text { implies } F(u, v) \in S\left(E_{0}\right) \tag{I}
\end{equation*}
$$

is valid, where F is a differentiable function.
Remark. We consider equation (E_{0}) instead of the general equation

$$
\begin{equation*}
\Phi\left(U_{x}, U_{y}, U, x, y\right)=0 \tag{0.4}
\end{equation*}
$$

for technical reasons. Similar conclusions can be obtained for equation (0.4).

1. Theorem. A differentiable function $F=F(u, v)$ is a connecting function for $\left(E_{0}\right)$ if and only if:
(i) equation $\left(E_{0}\right)$ is of the form
(E_{1})

$$
g_{U}(U, x, y)\left(a U_{x}+b U_{y}\right)+c g(U, x, y)=0
$$

where a, b, c are functions of x, y and g is a differentiable function;

[^0](ii) there exist a differentiable function f such that:
\[

$$
\begin{align*}
g(F, x, y) & =g(u, x, y) f\left(\frac{g(v, x, y)}{g(u, x, y)}\right) \tag{1.1}\\
g_{x}(F, x, y) & =g_{x}(u, x, y) f\left(\frac{g(v, x, y)}{g(u, x, y)}\right) \tag{1.2}\\
& +f^{\prime}\left(\frac{g(v, x, y)}{g(u \cdot x, v)}\right)\left(g_{x}(v, x, y)-g_{x}(u, x, y) \frac{g(v, x, y)}{g(u, x, y)}\right) \\
g_{y}(F, x, y) & =g_{y}(u, x, y) f\left(\frac{g(v, x, y)}{g(u, x, y)}\right) \tag{1.3}\\
& +f^{\prime}\left(\frac{g(v, x, y)}{g(u, x, y)}\right)\left(g_{y}(v, x, y)-g_{y}(u, x, y) \frac{g(v, x, y)}{g(u, x, y)}\right)
\end{align*}
$$
\]

Proof. 1° Sufficient conditions. Let $u, v \in S\left(E_{1}\right)$.
Differentiating (1.1) with respect to x and y and using (1.2) and (1.3), we find

$$
\begin{align*}
& g_{F}(F, x, y)\left(F_{u} u_{x}+F_{v} v_{x}\right)=g_{u}(u, x, y) u_{x} f \tag{1.4}\\
& \\
& \quad+f^{\prime} \cdot\left(g_{v}(v, x, y) v_{x}-g_{u}(u, x, y) u_{x} \frac{g(v, x, y)}{g(u, x, y)}\right)
\end{align*}
$$

and

$$
\begin{align*}
g_{F}(F, x, y)\left(F_{u} u_{y}\right. & \left.+F_{v} v_{y}\right)=g_{u}(u, x, y) u_{y} f \tag{1.5}\\
& +f^{\prime} \cdot\left(g_{v}(v, x, y) v_{y}-g_{u}(u, x, y) u_{y} \frac{g(v, x, y)}{g(u, x, y)}\right)
\end{align*}
$$

Using (1.1), (1.4) and (1.5), we get that $F=F(u, v)$ is also a solution of equation (E_{1}), i.e. F is a connecting function for $\left(E_{1}\right)$, which proves the first part of the theorem.
2° Necessary conditions. Let $u, v \in S\left(E_{0}\right)$ and (I) holds, i.e. let $F(u, v) \in S\left(E_{0}\right)$. Then we have $u_{x}=\Phi\left(u_{y}, u, x, y\right), v_{x}=\Phi\left(v_{y}, v, x, y\right), F_{x}=F_{u} u_{x}+F_{v} v_{x}=\Phi\left(F_{y}, F, x, y\right)$ and
(1.6) $\quad F_{u} \Phi\left(u_{y}, u, x, y\right)+F_{v} \Phi\left(v_{y}, v, x, y\right)=\Phi\left(F_{u} u_{y}+F_{v} v_{y}, F, x, y\right)$.

Differentiating (1.6) with respect to u_{y} and v_{y} we get

$$
\begin{equation*}
\frac{\partial^{2} \Phi\left(F_{y}, F, x, y\right)}{\partial F_{y}{ }^{2}}=0 . \tag{1.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Phi\left(t_{1}, t_{2}, x, y\right)=A\left(t_{2}, x, y\right) t_{1}+B\left(t_{2}, x, y\right) \tag{1.8}
\end{equation*}
$$

where A and B are arbitrary functions of t_{2}, x, y.

Substituting (1.8) into (1.6), we find

$$
\begin{equation*}
A(u, x, y)=A(v, x, y)=A(F, x, y)=-\frac{b(x, y)}{a(x, y)}, \tag{1.9}
\end{equation*}
$$

where a and b are arbitrary functions of x and y.
Also we have

$$
\begin{equation*}
F_{u} B(u, x, y)+F_{v} B(v, x, y)=B(F, x, y) . \tag{1.10}
\end{equation*}
$$

Putting

$$
\begin{equation*}
B(t, x, y)=-\frac{c(x, y)}{a(x, y)} \frac{g(t, x, y)}{g_{t}(t, x, y)} \tag{1.11}
\end{equation*}
$$

into (1.10), we get

$$
\begin{equation*}
\frac{g(u, x, y)}{g_{u}(u, x, y)} F_{u}+\frac{g(v, x, y)}{g_{v}(v, x, y)} F_{v}=\frac{g(F, x, y)}{g_{F}(F, x, y)} . \tag{1.12}
\end{equation*}
$$

Also, from (1.8) and (1.11) we obtain that equation $\left(E_{0}\right)$ is of the form $\left(E_{1}\right)$, i.e. the condition (i) is fulfiled.

Furthermore, the general solution of equation (1.12) is given by

$$
\begin{equation*}
g(F, x, y)=g(u, x, y) f\left(\frac{g(v, x, y)}{g(u, x, y)}\right), \tag{1.13}
\end{equation*}
$$

where f is an arbitrary differentiable function.
Differentiating (1.13) with recpect to x and y, we get

$$
\begin{align*}
& g_{F}(F, x, y) F_{x}+g_{x}(F, x, y)=\left(g_{u}(u, x, y) u_{x}+g_{x}(u, x, y)\right) f \tag{1.14}\\
& \quad+f^{\prime} \cdot\left(g_{v}(v, x, y) v_{x}+g_{x}(v, x, y)\right)-\frac{g(v, x, y)}{g(u, x, y)}\left(g_{u}(u, x, y) u_{x}+g_{x}(u, x, y)\right)
\end{align*}
$$

and

$$
\begin{align*}
& g_{F}(F, x, y) F_{y}+g_{y}(F, x, y)=\left(g_{u}(u, x, y) u_{y}+g_{y}(u, x, y)\right) f \tag{1.15}\\
& +f^{\prime} \cdot\left(g_{v}(v, x, y) v_{y}+g_{y}(v, x, y)\right)-\frac{g(v, x, y)}{g(u, x, y)}\left(g_{u}(u, x, y) u_{y}+g_{y}(u, x, y)\right) .
\end{align*}
$$

Since $F(u, v) \in S\left(E_{1}\right)$ we have $\dot{g}_{F}(F, x, y)\left(a F_{x}+b F_{y}\right)+g(F, x, y)=0$.
From the above and (1.13), (1.14), (1.15) we obtain (1.2) and (1.3).
All connecting functions for equation $\left(E_{1}\right)$ may be determined from (1.13), (1.2), (1.3). This means that $F=F(u, v)$ is a connecting function for $\left(E_{1}\right)$ if and only if there exists a function f such that (1.1), (1.2), (1.3) are valid. This completes the proof.
2. Remarks. 1° Theorem can be formulated in the following way:

The only first order partial differential equation which has a connecting function of the form $F(u, v)$ is of the form $\left(E_{1}\right)$.
$F=F(u, v)$ defines a nonlinear superposition for $\left(E_{1}\right)$ if and only if there exists differentiable function f such that (1.1), (1.2) and (1.3) holds.
2° Let $g(t, x, y)=t+d / c$ (d is a function of $x, y ; d / c$ is not a constant). Then $\left(E_{1}\right)$ becomes

$$
\begin{equation*}
a U_{x}+b U_{y}+c U+d=\mathbf{0} . \tag{2.1}
\end{equation*}
$$

In this case (1.1) takes the form

$$
\begin{equation*}
F(u, v)+\frac{d}{c}=\left(u+\frac{d}{c}\right) f\left(\frac{v+(d / c)}{u+(d / c)}\right) \tag{2.2}
\end{equation*}
$$

and from (1.2) and (1.3) it follows

$$
\begin{equation*}
1=f(t)+f^{\prime}(t)(1-t) \tag{2.3}
\end{equation*}
$$

where $t=\frac{v+(d / c)}{u+(d / c)}$.
The general solution for equation (2.3) is $f(t)=\alpha(t-1)+1$ where α is an arbitrary constant.

Thus the nonlinear superposition for equation (2.1) is defined by $F(u, v)=u+\alpha(v-u)$.
This result was also obtained by J. D. Kečkić in paper [1].
3° In the case when $g(t, x, y)=g(t)$ we have the equation

$$
g^{\prime}(U)\left(a U_{x}+b U_{y}\right)+c g(U)=0
$$

For this equation nonlinear superposition is defined by

$$
g(F(u, v))=g(u) f\left(\frac{g(v)}{g(u)}\right),
$$

where f is an arbitrary function.
Equation (0.3) reduces to equation (2.4) after the substitution $\varphi(U)=\frac{g(U)}{g^{\prime}(U)}$, and our result reduces to result of J. D. Kečkić, for the equation (0.3).
4° Let $g(t, x, y)=g(t)+d / c$ (d is a function of x and y such that d / c is not a constant). Then we have the equation

$$
g^{\prime}(U)\left(a U_{x}+b U_{y}\right)+c g(U)+d=0
$$

for which the nonlinear superposition is defined by

$$
g(F(u, v))-g(u)+\alpha(g(v)-g(u)),
$$

where α is an arbitrary constant.
3. We shall return to this topic and shall, in particular, investigate second order equations in an other paper.

REFERENCE

1. J. D. Kečkić: On nonlinear superposition. Math. Balkanica 2 (1972), 88-93.

[^0]: * Presented April 5, 1977 by D. S. Mitrinović and J. D. Kečkić.

