Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat Fiz. № 577 -№ 598 (1977), 39-44.
584. MULTIPLE TRIANGLE INEQUALITIES*

G. Bennett

1. Introduction. Let P and P^{\prime} be interior points of triangle $A_{i}(i=1,2,3)$ with sides a_{i}, circumradius R and area Δ. If $R_{i}=P A_{i}, R_{i}^{\prime}=P^{\prime} A_{i}$, I give, first, a proof that

$$
\begin{equation*}
a_{1} R_{1} R_{1}^{\prime}+a_{2} R_{2} R_{2}^{\prime}+a_{3} R_{3} R_{3}^{\prime} \geqq 4 R \Delta \tag{1}
\end{equation*}
$$

with equality if and only if P and P^{\prime} are isogonal conjugates.
Next, isogonal, inversion and reciprocation transformations on (1) will yield dual inequalities along with some special cases. (Klamkin [1] and Oppenheim [2])

The main part of this artcle consists of a new proof of the two-triangle inequality of Bottema [$3,12.56$]

$$
\begin{equation*}
\left(a_{1} x+b_{1} y+c_{1} z\right)^{2} \geqq(M / 2)+8 \Delta \Delta^{\prime} \tag{2}
\end{equation*}
$$

where $M=\sum a_{1}{ }^{2}\left(b^{2}+c^{2}-a^{2}\right) ; a_{1}, b_{1}, c_{1}$ and a, b, c are sides of two arbitrary triangles of area Δ^{\prime}, Δ respectively and x, y, z are the distances from an interior point P of triangle $A B C$ to the respective vertices. (1) will play an important role in my proof of (2) and also cast new light on the conditions for equality. (Bottema, Klamkin [4])

Finally, my proof of (2) will, in turn, suggest a new three-triangle inequality. The article concludes with some spesial cases and general observations.
2. Proof of (1). Using figure A as an aid, assume given triangle A_{i} with sides a_{i} and area Δ, and let triangle B_{i} be the pedal triangle of the interior point P with sides b_{i}. If P^{\prime} is also any interior point, let $R_{i}=P A_{i}, R_{i}^{\prime}=P^{\prime} A_{i}$, and R_{i}^{\prime} intersect b_{i} at angle θ_{i}. Draw $P^{\prime} B_{1}, P^{\prime} B_{2} P^{\prime} B_{3}$ partitioning triangle A_{i}

Figure A

[^0]into quadrilaterals $P^{\prime} B_{2} A_{1} B_{3}, P^{\prime} B_{3} A_{2} B_{1}$ and $P^{\prime} B_{1} A_{3} B_{2}$ whose areas are respectively (1/2) $b_{i} R_{i}{ }^{\prime} \sin \theta_{i}$. Since $\sin \theta_{i} \leqq 1, \sum b_{i} R_{i}{ }^{\prime} \geqq 2 \Delta$. Now, (Court [5] and Johnson [8]) $\theta_{1}=\theta_{2}=\theta_{3}=90^{\circ}$ if and only if P^{\prime} is the isogonal conjugate of P. Since $b_{i}=a_{i} R_{i} / 2 R$, this concludes the proof of (1).
3. Special Cases of (1). If $P^{\prime}=\operatorname{circumcenter}(O)$, (1) reduces to
$$
\sum R_{i} a_{i} \geqq 4 \Delta
$$
with equality if and only if $P=\operatorname{orthocenter}(H)$. This inequality can be used to give an alternate proof to the classic theorem: in acute triangles, the inscribed triangle having minimal perimeter is the orthic triangle. (Pedoe [6], Kay [7])

For another special case, let $P=P^{\prime}$. Then, (1) simplifies to

$$
\begin{equation*}
\sum R_{i}{ }^{2} a_{i} \geqq 4 R \Delta \tag{3}
\end{equation*}
$$

with equality when $P=$ incenter (I).
An inversion transformation on (3) yields a dual inequality

$$
\begin{equation*}
\sum a_{1} R_{2} R_{3} \geqq 4 R \Delta \tag{4}
\end{equation*}
$$

with equality when $P=H$.
A reciprocation transformation on (3) yields

$$
\begin{equation*}
\sum a_{1} R_{1} r_{2} r_{3} \geqq \frac{\Delta R_{1} R_{2} R_{3}}{R} \tag{5}
\end{equation*}
$$

with equality when $P=O$.
As isogonal transformation on (3) yields

$$
\begin{equation*}
\sum a_{1}\left(r_{1} R_{1}\right)^{2} \geqq \frac{\Delta\left(R^{2}-P O^{2}\right)^{2}}{R} \tag{6}
\end{equation*}
$$

with equality when $P=I$. Multiple triangle inequalities can easily be derived using (3) - (6) by letting P vary over the interior of triangle A_{i}. For example, if $P=I$, (5) reduces to $\sum \cos A_{i} / 2 \geqq \sum \sin A_{i}$. This result can be derived directly as follows:

$$
\begin{aligned}
\frac{1}{2}\left(\sin A_{1}+\sin A_{2}\right) & =\sin \left(A_{1}+A_{2}\right) / 2 \cos \left(A_{1}-A_{2}\right) / 2 \\
& =\cos A_{3} / 2 \cos \left(A_{1}-A_{2}\right) / 2 \\
& \leqq \cos A_{3} / 2
\end{aligned}
$$

Thus, $\sum \sin A_{i} \leqq \sum \cos A_{i} / 2$ with equality if triangle A_{i} is equilateral.
Finally, let triangle A_{i} be equilateral with side a in (1). If P^{\prime} is at the center, (1) reduces to

$$
\begin{equation*}
R_{1}+R_{2}+R_{3} \geqq \sqrt{3} \quad a \tag{7}
\end{equation*}
$$

and one way this result can be verified independently is to show

$$
\sum R_{1} \sin \left(60^{\circ}+\theta_{1}\right)=\sqrt{3} a
$$

where $\theta_{1}=$ angle $A_{3} A_{1} P$, etc.
4. Proof of (2). Changing to a more convenient notation, assume given two arbitrary triangles A_{i} and $A_{i}{ }^{\prime}$ with sides a_{t} and $a_{i}{ }^{\prime}$ respectively. Let $R_{1}=P A_{1}$, etc. where P is any interior point of triangle A_{i}, and

$$
\Phi=\sum a_{1}^{\prime 2}\left(a_{2}^{2}+a_{3}^{2}-a_{1}^{2}\right)+16 \Delta \Delta^{\prime}
$$

Bottema's inequality now takes on the following form:

$$
\begin{equation*}
\left(\sum a_{1}{ }^{\prime} R_{1}\right)^{2} \geqq \frac{\Phi}{2} . \tag{8}
\end{equation*}
$$

To prove (8), construct outwordly on the sides of triangle A_{i}, triangles similar to triangle A_{i}^{\prime} in the following sense: (see figure B)

$$
X_{1} A_{3} A_{2} \sim A_{1} A_{3} X_{2} \sim A_{1} X_{3} A_{2}
$$

Figure B
It is known (Johnson [8]) that $A_{1} X_{1}, A_{2} X_{2}$, and $A_{3} X_{3}$ intersect at a point. Call this point Q. If P^{\prime} is the isogonal conjugate of Q, the pedal triangle B_{i} of P^{\prime} is similiar to triangle $A_{i}{ }^{\prime}$. Let b_{i} be the sides of triangle $B_{i}, R_{i}{ }^{\prime}=P^{\prime} A_{i}$ and $r_{i}^{\prime}=P^{\prime} B_{i}$. It is now easy to show that $a_{1}{ }^{\prime}=\frac{1}{2 \Delta} \sqrt{\frac{\Phi}{2}} b_{1}$, etc., $R_{1}{ }^{\prime}=\sqrt{\frac{2}{\Phi}} a_{1}{ }^{\prime} a_{2} a_{3}$, etc., $r_{1}{ }^{\prime}=\frac{8 R \Delta}{\Phi} a_{2}{ }^{\prime} a_{3}{ }^{\prime} \sin \left(A_{1}+A_{1}{ }^{\prime}\right)$, etc.
(In passing, we note the above construction gives one possible solution to the problem-given any two triangles, to inscribe a triangle similar to one triangle inside the other triangle.) Now, let P be any interior point in triangle A_{i}, and $R_{1}=P A_{1}$, etc. Clearly, $a_{1}{ }^{\prime} R_{1}=\frac{1}{.2 \Delta} \sqrt{\frac{\Phi}{2}} b_{1} R_{1}$ and summing over the three sides yields

$$
\begin{equation*}
\left(\sum a_{1}^{\prime} R_{1}\right)^{2}=\frac{\Phi}{2}\left[\frac{\sum b_{1} R_{1}}{2 \Delta}\right]^{2} . \tag{9}
\end{equation*}
$$

Since it has been shown above that $\sum b_{1} R_{1} \geqq 2 \Delta$ and from figure $B, b_{1}=a_{1} R_{1}{ }^{\prime} / 2 R$, I conclude

$$
\left(\sum a_{1}^{\prime} R_{1}\right)^{2}=\frac{\Phi}{2}\left[\frac{\sum a_{1} R_{1} R_{1}^{\prime}}{4 R \Delta}\right]^{2} \geqq \frac{\Phi}{2}
$$

with equality only if $\sum a_{1} R_{1} R_{1}{ }^{\prime}=4 R \Delta$ and that can happen if and only if P and P^{\prime} are isogonal conjugates.
5. Special Cases of (8). If triangle A_{i} and A_{i}^{\prime} are similiar, Φ is proportional to $32 \Delta^{2}$ and (8) reduces to $\sum a_{1} R_{1} \geqq 4 \Delta$, a special case derived earlier.

Another special case is to leave unchanged the two triangles while applying within triangle A_{i} an isogonal transformation. Then (8) reduces to the following:

$$
\begin{equation*}
\left(\sum a_{1}^{\prime} r_{1} R_{1}\right)^{2} \geqq \frac{\Phi\left(\sum a_{1} r_{2} r_{3}\right)^{2}}{8 \Delta^{2}} . \tag{10}
\end{equation*}
$$

If the two triangles are similar (10) reduces to

$$
\begin{equation*}
\sum a_{1} r_{1} R_{1} \geqq 2 \sum a_{1} r_{2} r_{3} \tag{11}
\end{equation*}
$$

with equality when $P=O$.
Another special case is to let $P=P^{\prime}$. If $R_{1}=\sqrt{\frac{2}{\Phi}} a_{1}^{\prime} a_{2} a_{3}$, (8) reduces to

$$
\begin{equation*}
\sum a_{1}^{\prime 2} a_{2} a_{3} \geqq \frac{\Phi}{2} \tag{12}
\end{equation*}
$$

and again letting the two triangles be similiar reduces (12) to Euler's well-known inequality $R \geqq 2 r$. If, instead, triangle $A_{i}{ }^{\prime}$ is similiar to the reciprocal triangle relative to P, then (12) transforms to

$$
\begin{equation*}
\sum a_{1}\left(r_{1} R_{1}\right)^{2} \geqq \frac{\Delta\left(R^{2}-P O^{2}\right)^{2}}{R} \tag{13}
\end{equation*}
$$

with equality when $P=I$.
6. A Three-triangle Inequality. Our starting point is the known inequality (Klamkin [9])

$$
\begin{equation*}
\left(\sum w_{1}\right)\left(\sum w_{1} R_{1}^{2}\right) \geqq \sum a_{1}^{2} w_{2} w_{3} \tag{14}
\end{equation*}
$$

where P is any interior point of triangle A_{i} with sides $a_{i}, R_{1}=P A_{1}$, etc. and w_{i} are real numbers. There is equality iff $a_{1} r_{1} / w_{1}=a_{2} r_{2} / w_{2}=a_{3} r_{3} / w_{3}$. Let

$$
R_{1}==\sqrt{\frac{2}{\Phi}} a_{1}^{\prime} a_{2} a_{3}
$$

in (14). Then,

$$
\begin{equation*}
\sum w_{1} a_{1}^{\prime 2} a_{2}^{2} a_{3}^{2} \geqq \frac{\Phi \sum a_{1}{ }^{2} w_{2} w_{3}}{2 \sum w_{1}} \tag{15}
\end{equation*}
$$

with equality iff

$$
\left.a_{1} a_{2}{ }^{\prime} a_{3}{ }^{\prime} \sin \left(A_{1}+A_{1}{ }^{\prime}\right) / w_{1}=a_{2} a_{3}{ }^{\prime} a_{1}{ }^{\prime} \sin A_{2}+A_{2}{ }^{\prime}\right) / w_{2}=a_{3} a_{1}{ }^{\prime} a_{2}{ }^{\prime} \sin \left(A_{3}+A_{3}{ }^{\prime}\right) / w_{3} .
$$

(15) can be viewed as a three-triangle inequality by restricting the w_{i} to be sides of a third arbitrary triangle W_{i}. Letting any combination of the three triangles take on special restrictions and/or placing restrictions on the interior point P of triangle A_{i} clearly yields a large number of triangle inequalities and equalities. Inversion and reciprocation transformations yield dual inequalities often difficult to show by more elementary methods.
7. Special Cases of (15). If triangle A_{i}^{\prime} is similiar to triangle A_{i}, then Φ is proportional to $32 \Delta^{2}$ and (15) reduces to the following:

$$
\begin{equation*}
R^{2}\left(\sum w_{i}\right)^{2} \geqq \sum a_{1}^{2} w_{2} w_{3} . \tag{16}
\end{equation*}
$$

If w_{i} form the sides of a triangle W_{i}, there will be equality if and only if triangle W_{i} is similar to the orthic triangle of acute triangle A_{i}. (This is Problem E 2221, Amer. Math. Monthly 78 (1971), 82 - 83).

Again, let triangle A_{i}^{\prime} be similiar to the reciprocation triangle relative to P in triangle A_{i}. (15) reduces to

$$
\begin{equation*}
\sum w_{1}\left(r_{1} R_{1}\right)^{2} \geqq \frac{\left(R^{2}-P O^{2}\right)^{2} \sum a_{1}{ }^{2} w_{2} w_{3}}{4 R^{2} \sum w_{1}} \tag{17}
\end{equation*}
$$

with equality if and only if $r_{1} w_{1} / a_{1}=r_{2} w_{2} / a_{2}=r_{3} w_{3} / a_{3}$. If triangle W_{i} is similiar to triangle A_{i}, (17) reduces to (6).

Remark. An isogonal transformation on (14) yields (17) also. Indeed, the reciprocation transformation relative to P, while clever and convenient, is not really new-it is just an inversion transformation with respect to the isogonal conjugate of P.

Finally, if triangle A_{i}^{\prime} is similiar to the inversion triangle of P in triangle A_{i}, (15) reduces to (14). Thus, (15) is, indeed, a more general triangle inequality.

REFERENCES

1. M. S. Klamkin: Triangle inequalities via transforms. See Notices of Amer. Math. Soc., Jan. 1972, pp A-103, 104.
2. A. Oppenheim: The Erdös inequality and other inequalities for a triangle. Amer. Math. Month ly 68 (1901), 226-230.
3. O. Bottema, R. Ž. Đorbević, R. R. Janić, D. S. Mitrinović, P. M. Vasić: Geometric inequalities. Groningen, 1969.
4. O. Bottema, M. S. Klamkin: Joint triangle inequalities. Simon Stevin 48 (1974), 3-7.
5. N. Court: College Geometry. New York, 1952, p. 270.
6. D. Pedoe: A Course of Geometry for Colleges \& Universities. Cambridge 1970, pp. 68-71.
7. D. Kay: College Geometry. New York, 1960, pp. 226-227.
8. R. Johnson: Advanced Euclidean Geometry. New York, 1960, p. 156, pp. 222-223.
9. M. S. Klamkin: Geometric inequalities via the polar moment of inertia. Math. Mag. 48 (1975), 44-46.

Department of Mathematics
Western Montana College
Dillon, Montana

[^0]: * Presented March 15, 1977 by O. Bottema and R. R. Janić.

