UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 577 — № 598 (1977), 38.

583. A FEW REMARKS ON A PREVIOUS PAPER REGARDING THE CONVERGENCE OF CERTAIN SEQUENCES*

Vlajko Lj. Kocić

In this note we give three remarks which supplement and correct the result of paper [1].

1. Using the concepts defined in [1] we can formulate the following: **Theorem.** Let E be a complete metric space and let sphere $S(z, r) \subset E$. Furthermore let $f: E^p \rightarrow E$ such that

$$d(f(u_1, \ldots, u_p), f(u_2, \ldots, u_{p+1})) \leq A(d(u_1, u_2), \ldots, d(u_p, u_{p+1}))$$

holds for every $u_i \in S(z, r)$ $(i = 1, \ldots, p+1)$.

Let A: $[\theta, h]^p \rightarrow G([\theta, h] \subset G)$ be nondecreasing and continuous with respect to sequences, such that the equation

$$y = A(y, \theta, \ldots, \theta) + A(\theta, y, \ldots, \theta) + \cdots + A(\theta, \ldots, \theta, y) \quad (y \in [\theta, h])$$

has the unique solution θ . Also, let there exists $q \in [\theta, h]$ such that $d(z, f(z, ..., z)) \leq q, q + A(r, \theta, ..., \theta) + A(\theta, r, ..., \theta) + \cdots + A(\theta, ..., \theta, r) \leq r$ where $A(b, ..., b) \leq b$ and $A(b, \theta, ..., \theta) + A(\theta, b, ..., \theta) + \cdots + A(\theta, ..., \theta, b) \leq b$ for $2r \leq b$ and let the series $\sum_{n=0}^{+\infty} A_n$ converge, where

$$A_0 = b, \ A_k = A(A_{k-1}, \ldots, A_{k-1})$$
 $(k = 1, 2, \ldots).$

Then, the sequence (x_n) defined by $x_{n+p} = f(x_n, \ldots, x_{n+p-1})$, where $x_1, \ldots, x_p \in S(z, r)$ are arbitrary chosen

 1° converges in S(z, r);

2° the unique solution of the equation $x = f(x_1, \ldots, x)$ is $x = \lim x_n$.

The proof of the above theorem is similar to the proof of theorem from [1], and we shall therefore omit it.

2. The theorem given in [1] should be modified in such a way that the condition (2) is replaced by

$$d(f(u_1, \ldots, u_n) f(v_1, \ldots, v_n)) \leq A(d(u_1, v_1), \ldots, d(u_n, v_n))$$

for every u_i , $v_i \in S(z, r)$ $(i = 1, \ldots, p)$.

3. Corollaries 2 and 3 given in [1] are, in fact corollaries to the theorem given above, and not to the (modified) theorem from [1].

REFERENCE

1. V. Lj. Kocić: A theorem on the convergence of sequences defined by recurrent rela tions. These Publications № 498 — № 541 (1975), 149 — 152.

^{*} Presented April 2, 1977 by J. D. KEČKIĆ.