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582. ON THE RATIO OF MEANS*
Petar M. Vasi¢ and Igor Milovanovié

In this article a result due to A. W. MARSHALL, I. OLKIN and F. PROSCHAN
is generalized by providing a proof for the corresponding result for weighted means.
The method different from that used by the aforementioned authors also ena-
bles further improvement of their inequality at the expense of some additional
assumptions on the sequences. Integral analogous of these results have also been
included.

Theorem 1. If p,>0,..., p,>0, a>0,..., a,>0, by=-..-=b,>0 and
if ﬁg - gbl, then function f, defined by
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is nondecreasing.

.Proof. We shall use the following inequality for means (see [1], p.76):

=z — (r=s),

Q)
where P;, x,>0 (i=1,..., n).

* Pretented May 13, 1977 by D. S. MITRINOVICE.
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Substituting: P,=p; b7, xi:% (i=1,..., n) in (1) we obtain
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/ n n —}-
[ Z pibs T ar z p;a’
@) = z| - (r=zs)
> pibf > pibs
i=1 i=1
To complete the proof we must prove
n - n -
pibsraf > pial
3) e R (r=zs).
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Let us take CeBYSEV’s inequality
n n n n
4 4D GXN= > 4GX > 4V
i=1 i=1 i=1 i=1
which is true if (¢,, ..., q,) is a positive sequence and if both sequences
(x,,...,x,) and (y,,...,y,) are nonincreasing, or both nondecreasing. If one
of the sequences (x,, ..., x,) and (y,, ..., ¥,) is nonincreasing and the other

nondecreasing, the reverse inequality in (4) is valid (see [1], p. 36).
Substituting ¢,=p, a;, x.:(ﬁ)r, y;=bs77 in (4), we get for r>0:
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and for r<<0 we get the reverse inequality (as (b,/a,),_,,. .., » 1s a nondecreasing
sequence (b//a7)._,... .. . 1s nondecreasing for >0 and nonincreasing for r < 0;
as (b);..,..., » Is a nonincreasing sequence, (b7"),_,,.. ., . 1s nondecreasing).
From (5) we obtain (3) for r>0. If r<0, from the reverse inequality
related to (5) it follows (3).
The proof is, in fact, given for rs+#0. For rs=0 the theorem can be
proved directly by the transition to the limit.

Similarly, we can prove

Theorem 2. If p,>0,...,p,>0,4,>0,...,a,>0,b,2b,_,=---2b>0, andif
fl-g <. gﬁ, then function f defined in Theorem 1 is nondecreasing.
a, a,

Substituting p,=1 (i=1, ..., n) in theorem 1 we get the result from [3].

The same result is there proved in a different way. The method we had used
enables some generalizations.
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Theorem 3. If p,>0, ..., p,>0, x,=0, x,>0, ..., x,>0and (0, x,, ..., x,)
is a convex sequence, then for rzs, the following inequality is valid
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Proof. 1f we put x,—i—1 in inequality (1), we obtain «a=1. To prove (6),
we carry out substitutions in (1): P,=p, (i— 1), x,— L’l (i=1,..., n), and
i—

we get
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To complete the probf, we must show that
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which we get when we carry out substitutions in inequality (4):

G=p 1y %=1y~ = () (=2, ), x==0

. X; . .
(as (x);—:..... , 15 a convex sequence, (—’)i_z . 18 & nondecreasing sequence
seees )=

(see [2])) . a

Since «z1, it may be concluded that inequality (6) is sharper than
inequality (1) provided that the conditions of convexity for the sequence (x;, .. ., X,)
are added.

The following theorem is a generalization of theorem 1.
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Theorem 4. If p,>0,..., p,>0, a,=0, a,>0, a,>0, ..., a,>0, b,>0, ...,

a a .
b,>0, b=b,<---=b, and (—‘, . —") is a convex sequence, then for r=s
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is valid, where
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Proof. Putting p,— p,b*, xi—>% in (6) we obtain

i

n 7 n
> pibsrar > piag
i=1 > i=1 (r=3).
n n
2, pibs =1y 2, pibsi—1y
i=1 i=1
To complete the proof, we must prove that
n n n n
pibf(i—1y S piafz > p, by (i—1)y 3 pbf~"a),
i=1 i=1 i=1 i=1

which we get when we carry out substitutions in (4):

=p; b (=1, x,=b"5, y,= o )r.
4;=p b (= 1), x;=b, Yi (bi(i—l)

Since from (1) follows that B =1 inequality (7) is sharper than inequality (1).

An integral analogue to theorem 1 is given by

Theorem 5. Let p, f, g be positive and integrable functions on [a, b]. If x — g(x)

and x & () are monotone in the opposite sense, function F, defined by

S
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[rgaydx
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b
[rmilogsreax

F(0)=exp
fp (x)logg (x)d x
is nonincreasing.

The preceding theorem as well as the next one can be proved analogously
to the corresponding theorems in the discrete case.

Theorem 6. If p, f, g are nonnegative functions, x I—é@ IS a convex function
g (x)
on [a, b], f(a)=0 and g is an increasing positive function on [a, D], then

b 1 b l
[r@sfeordx )’ [r@fardx )
e = =M | |,
b b
[r@ewrax [rerdx
where ’ ’
b 1 b 1
[P@era—ardx | [r@ewrax
M=|° . =1
b b
[rmewrdx [r®e@s x—aydx
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