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578. ON SOME TRIANGLE INEQUALITIES*

O. Bottema and J. T. Groenman

1. Introduction. In an attempt to obtain a certain system in the set of
several hundreds of inequalities with respect to a triangle [1] VAN ALBADA
remarked that the majority of them may be written as Pn (a, b, c) ~ 0, where
Pn is a homogeneous symmetric polynomial of order n for the variables a, b, c,
representing the sides of a triangle [2]. He derived the complete set Pn for
n ~ 3 and gave some partial results for n = 4. RIGBY [3] determined the complete
sets for n = 2 and n = 3 by a simpler method. Of interest are the inequalities
to be called special, with the property that equality holds for a = b = c.

In this paper we derive the complete set of special inequalities for n = 2,
n = 3, n = 4. In the sections 5 and 6 we discuss the relationship between these
"algebraic" inequalities and some results involving either the sides or the elements
s, Rand r of the triangle, s being its semiperimeter, and R, r the radii of its
circumscribed and inscribed circle.

2. A geometric mapping. The sides of a triangle satisfy the conditions that
anyone is less than the sum of the others. Therefore we introduce, as
RIGBY did, instead of a, b, c the variables u, = - a + b + c, Uz= a - b + c,
U3= a + b - c. This implies 2 a = Uz+ U3' 2 b = U3+ u" 2 c = u, + uz; it is obvious
that the necessary and sufficient conditions are simply u;> 0 (i = 1, 2, 3).

A special inequality reads now Pn (up uz, U3)~ 0, Pn being a homogeneous
symmetric polynomial or order n, with the property Pn (1, 1, 1) = O.

To illustrate our method we consider u; as the homogeneous triangle
coordinates of a point with respect to an equilateral triangle T = Tj Tz T3' The
conditions u;> 0 express that the image point is inside T.

Pn = 0 is the equation of a curve Kn of order n, which has the same
sym!1':etry as the equilateral triangle T. Furthermore M (1, 1, 1), the centre of
T, is a point of Kn and the symmetry implies that M is an isolated double
point of Kn, with the isotropic lines through M as tangents.

Any symmetric polynomial of u; is a function of the three elementary
expressions:

(2.1) 51=uj+UZ+U3' 5Z=UZU3+U3Uj+U,uz, 53=UjUZU3'

51 = 0 represents the line I at infinity, 5z = 0 is the equation of the circumcircle
of T, 53 = 0 is that of the degenerate cubic consisting of the sides of T.

3. The cases n=2 and n=3. WehavePz=iX5,z+~5z' If Pz~O inside T
then Pz(l, 0, O)=iX~O; P2(1, 1,1)=0 implies 3iX+~=0. The curve Kz is a
conic with an isolated double point at M and it is therefore degenerated into
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the two isotropic lines through M. Hence the complete set of special inequalities
of order 2 is given by

(3.1) a(SlZ-3Sz)~0, IX>O.

We have P3=IX:S13+~SlSZ+yS3' From P3(1, 0, O)~O it
pel, 1, 1)=0 implies 27IX+9~+y=0. Hence

(3.2) P3 = IXS13+ ~SlSZ - 9 (3IX+~) S3'

follows IX;;:~0;

We distinguish two cases IX> 0 and IX= O.
If IX> 0 we put ~= IX~l; the equation of K3 is now

(3.3)

K3 is a cubic curve with an isolated double point at M and therefore
rational. It intersects I at the points at infinity of the sides. K3 has no points
inside T, different from M, if it does not intersect the sides of T at points
between the vertices. The intersections with the sides are those on the circle
SIZ+ ~l Sz = 0, which for ~l > - 3 is imaginary, for ~l = - 3 the point circle
at M, for ~l = - 4 the inscribed circle and for ~= 00 the circumcircle. From this
it follows that K3 has no inside points (different from M) if ~ ~ - 4. We have
found the following set of special cubic inequalities:

(3.4) ~l ~ - 4.

For a = 0 we obtain
P3 = ~(Sl Sz - 9 S3)'

The curve K3 passes through the vertices Ti where it is tangent to the
circumcircle; this implies that it has no points inside T, different from M. As
P3 (0, 1, 1) = 2~ we must have ~ ~ 0; hence the inequality

(3.5) ~(Sl Sz - 9 S3) ~ 0, ~ ~ O.

From (3.4) and (3.5) it follows: the complete set of special cubic inequalities is
given by

(3.6) IXS/+~SlSZ-9(~+3IX)S3~0, IX~O, ~~-4IX.

Of the set (3.4) the best inequality is that for IX= 1, ~l = - 4; indeed we have

P3 (~l) - P3 ( - 4) = (~l + 4) (Sl Sz - 9 S3) ~ O. In this case K3 is tangent to the
sides of T at their midpoints. The image curve K3 is given in fig. I for IX= 1,

~= - 4 and for IX= 0 in fig. 2.

4. The case n = 4. We have now
(4.1) P4=IXS14+~SlzSZ+ysls3+asZz.

From P4 (1, 0, 0) ~ 0 it follows IX~ O. P (1, 1, 1) = 0 implies 27 IX+ 9 ~+ y + 3a= O.
We distinguish once more two cases: IX>O, a=O. If IX>O, ~=IX~p a=IXYl'
the equation of K4 reads

(4.2) S/+ ~lS/SZ - (27+ 9~1+ n1) SlS3+ a1S/= o.

It is a quartic curve with an isolated double point at M; K4 is tangent to I at
the isotropic points. The condition P4 ~ 0 for points inside T does not exclude
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that K4 has more isolated double points in that region. We deal with this pos-
sibility later on. Apart from this case it is necessary that K4 has no point

Fig. 2



14 O. Bottema and J. T. Groenman

between Tj and Mj, Mj being the midpoint of Tz T3, and no point between Tz
and T3' These conditions are also sufficient: they imply, in view of the curve's
symmetry that it does not intersect the sides of the triangle TzM1M; any oval
of K4 inside this triangle, however, would once more in view of the symmetry,
give rise to six ovals. This is impossible for a quartic curve; moreover a suitably
chosen circle with centre M would have fourteen intersections with K4' Hence
our condition comes to this: K4 has no point in common with either the
intervals Tj Mj or TzT3'

A parameter representation of the line Tj Mj is Uj= I, Uz= 1, U3= 1;
points between Tj and Mj satisfy 1>0. We have SI=I+2, Sz=21+1, S3=1.
The intersections with (4.2) are given by 1= 1 (twice) and by the roots of

(4.3) IZ+2(5+~I)I+16+4~j+a1=0,

a quadratic equation with discriminant D = (~j + 3)Z- 31, The two roots are
imaginary if D<O; for D = 0 they coincide, being positive for ~j < - 5, zero
or negative for ~1 ~ - 5; for D>O the two roots are non-positive if ~1 ~ 5 and
4~1 + aj + 16 ~ O. In the (~1' a1)-plane (fig. 3) we have the folIowing situation:
the condition is satisfied if the point (~j' aj) is to the right of the border g
consisting of the half-line gl along the line :l: with equation 4~1 + aj + 16 = 0,
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from Q ( - 5, 4) downwards, and of the arc gz of the parabola p with equation
~j = ([1j+ 3)Z from Q upwards; the line :l: is tangent to p at Q. Points on the
border g will be considered later on.

Fig. 4 (~= -3)

A further condition must be satisfied: K4 has no intersections with the
interval Tz T3' Its intersection with Uj= 0 are those of this line and

Sj4+ [1SjZSz+ ~j S/ = 0,

which represents two circles SjZ - \ Sz = 0 and SjZ - AzSz = O. A circle SjZ - ASz= 0
is imaginary if A ~ 3, it is the inscribed circle of T if A= 4 and the
circumscribed circle if A= 00. Hence our condition comes to this: the roots
of A2 + [1jA+ ~j = 0 must be either imaginary or both at most equal to 4.
This implies that either [1jZ- 4~j <0 or ~/ - 4~j ~ 0, 4[1j + ~j + 16 ~ 0, ~j + 8 ~ O.
It may be verified that all points (~]' ~1) on or to the right of g, satisfy these
conditions. Thus we have found a set, with two parameters, of quartic special
inequalities. It is given by (4.2) provided the point ([1j' ~]) is in the region (j

of the (~j' ~j)-plane, where q consists of the points on or to the right of
the border g. For ~1= 0, K4 is degenerated into I and a cubic curve; we
find once more the cubic ir:equalities (3.4), the point (- 4, 0) being the intersection
of :l: and the ~l-axis.

The most intere3ting inequalities will be those corresponding to points on
the border g. On the lower part, we have ~l = - 4~1- 16; hence we obtain
the following one-parameter set of quartic inequalities

(4.4) ~1;;;-5.
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One of the roots of (4.3) is now zero and K4 passes through the midpoints Mi,
The other root is t = - 2 ([1l + 5) and as t = - 2 represents the point at infinity
of Tj Mj we obtain for [1[> - 4 a quartic curve as given in fig. 4, for
- 5 < [1[< - 4 that of fig. 5 and for ~j = - 4 (the degenerate case) fig. 1. If

[11--+ - 5 the three ovals of fig. 5 decrease and for [1[= - 5 they reduce to the
points Mi, K4 has four isolated points in this case and must therefore be
degenerated. Its equation .

(4.5) S[4- 5 S/Sz+ 6 SjS3 +4 S/=O

may be written as Cj Cz = 0, with

C[ = u[z + (0[ Uj Uz + (0zu/ + Uz U3+ (0zUj U3+ (0[
u/'

Cz = UjZ + (0z u[ Uz + (0[ Uz
z

+ Uz U3+ (0j Uj U3+ (0z U3z,

where (0i are the complex cubic roots of unity.
C[ = 0 and Cz = 0 represent two conics each passing through M, M[,

Mz, M3 and tangent to I at an isotropic point. After some algebra it is seen
that (4.5) is equiva!ent to

(4.6) L (- Uj + Uz + uy (uz - u3)Z = O.

The inequa1ity for ~l = - 5 reads
Sj4- 5 S/Sz + 6 S[S3 + 4 Szz ~ 0,

with equality for the equilateral triangle (and for three degenerate triangles).

(4.7)

Fig. 5 (~= -4 ~)
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We consider now the parabolic arc g2' It is given by a1= (~1+ 3)2,
[31~ - 5. For the corresponding K4 we obtain

(4.8) S14+ [31S/S2 - 3 ([312+ 9 [31+ 18) SI 53 + ([31+ 3)2Sl = O.

The equation (4.3) has two equal roots t = - ([31+ 5), corresponding to the point
{ - ([31 + 5), 1, I} inside T. As could be expected and may be verified analytically
this point and two analogous ones are isolated
double points of (4.8) and its only real points.
These points, at Mi for ~1= - 5, penetrate the
triangle T if [3decreases. For [31= - 6 all three
coincide with M; in this case the image point
( - 6, 9) coincides with the left-hand intersec-
tion of the parabola p and the parabola p'

with the equation a1 = ~ [3/. K4 is degenera-
4

ted into two conics, for [3= - 6 both coinci-
ding with the pair of isotropic lines through
M; for ~1< - 6 the points are between M
and Ti. We have found a second one-para-
meter set of special quartic inequalities:

T~

Fig. 6

~1 ~ -5,

with equality for the equilateral triangle and for three isosceles triangles. The
sets (4.4) and (4.9) have the inequality (4.7) in common. It is clear that (4.9)
holds not only for points inside T but for all points of the urplane. We consider
now the case IX = 0 and obtain1

(4.10) P4 = [3S12S2- (9[3+ 3a) SI S3+ as/.

K4 passes now through the vertices Ti where it is tangent to the circumcircle.
P4(0, 1, 1) ~ 0 implies 4[3+a ~ O. The intersections with TIMI follow from
(t -

1)2(2[3t + 4[3+ a) = 0; which gives t = 1 (twice) and t = 00. For [3*0 the

remaining root is t = - 4(3+ a ; the condition for this point not to be an inside
2(3

point reads [3>0. The intersections of K4 and the sides of T follow from
[35/ + aS2 = 0 and we know that they do not lie between the vertices if - a/[3<4.
For ~ = 0 it is easily seen that K4 has isolated double points at Ti and it is
therefore degenerated into two conjugate, complex conics. We have found the
following set of special quartic inequalities

(4.11 ) [3~ 0,

For a = - 3 [3 the inequality is equivalent to (3.1).
We have in particular for [3= 0,

(4.12)

For [3>0 it follows from (4.11)

(4.13)
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and still more special for c = - 4:

(4.14) S[2S2+3S[S3-4S/~0.

The curve K4 corresponding to (4.13) is given in fig. 6.
We can show now that (4.7) is the best inequality of the set (4.4). Indeed

we have, in view of (4.14), for (4.4):
p 4(~[) - P4( - 5) = (~[ + 5){S/ S2 + 3 S[ S3- 4 S/} ~ O.

It is also the best inequality of the set (4.9): we have for the latter

P4 (~[) - P4 (- 5) = (~[ + 5){S[2S2 - 3 (~[+ 4) S[S3 + (~[+ 1)S/}

and that is ~ 0 in view of (4.13) for c = ~[ + 1.
In the same way it may be shown that (4.14) is the best inequality of

the set (4.13).

5. InequaJities for the sides of the triangle. In the preceding sections the
complete sets of special symmetric inequalities of order n = 2, 3 and 4 are given
by means of the elementary symmetric functions S[, S2' S3 of the positive numbers
Ui' We can transform them in terms of the sides a, b, c of the triangle. Introducing

(5.1) s2=bc+ca+ab, S3= abc,

it is easy to verify that the following relations hold:

(5.2)

and conversely

(5.3)

For n = 2 there is essentially
(5.2) we obtain

(5.4)

only one inequality: (3.1) for oc= 1. By means of

a well-known result (it is left-hand side of G.1. 1.1). For n = 3 the complete
set is given by (3.6), which transforms into

(5.5) (7 oc+ 2~) S[3
-

(27 oc+ 8 ~) s[ S2 + 18 (3 oc+ ~) S3~ 0, oc~ 0, ~~ -4oc.

Any known special cubic inequality must be a member of this set. We mention
some examples.

G. 1. 1.2. reads

or

(5.6)

that is (5.5) for oc= 17, ~= -53.

Another inequality is G.1. 1.3:

abc - 8 (s- a) (s- b) (s- c) ~ 0,
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or

(5.7)

that is (5.5) for IX=O, ~=~.
2

G.I. 1.5. gives us

8 (a3+ b3+ e3)
- 3 (b + eHe + aHa + b) ;S 0,

or

(5.8) 8s13_27s1s2+27s3;s0,

that is (5.5) for IX= 5, ~= - 27/2.

The rather complicated example G.I. 1.23.

5 [be(b+ e) + ea (e+ a) + ab (a + b)] - 3 abe -- (a+b + e)3;S 0

may be written

(5.9)

which is (5.5) for IX = 1, ~= - 4; we recognize it as the best inequality of the
set (3.4).

We consider now the case n = 4. The complete set derived above can be
transformed into a two-parameter set of inequalities for a, b, e; any special
symmetrie quartic inequality belongs to the set.

Let our first example be G.!. 1.14.

or

(5.10)

(a counter-part of (4.12) by the way), which transforms by means of (5.3) into

(5.11)

that is (4.2) for ~l = - 4, a1 = 1; the image point (- 4, 1) is (fig. 3) in G and
even on p, but not on g.

Another special symmetric quartic inequality (there are only a few in the
G.!. collection) is G.!. 1.9.

(5.12)

which may be shown to be equivalent to (4.12).
The best inequality of either the set (4.4) or the set (4.9) is (4.7) which

may be transformed by means of (5.2) into the following strong inequality for
the sides, which seems to be new:

(5.13)

Another, which also could be unknown, follows from (4.14):

(5.14)

2*
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6. Inequalities for s, R, r. Many triangle inequalities are not expressed
explicitly by means of the sides but contain other elements (goniometric functions
of the angles, altitudes, medians, etc); they can always in principle be reduced
to such where only the sides appear. We restrict ourselves to inequalities involving
s, Rand r. Use can be made of the following formulas [4]

(6.1) S2 = 4 r (4 R + r),

For n = 2 formula (3.1) gives us

(6.2) s2~3r(4R+r),

a well-known result (G.!. 5.5; 5.6) found as early as 1872.
For n = 3 we obtain from (3.6), for ex= 1,

s2~(8~+27)r2-4~Rr, ~~-4(6.3)

also well-known [5], and for ~ = - 4 STEINIG'S inequality

(6.4) S2 ~ - 5 r2+ 16 Rr.

For n = 4 some less known results are derived. For (4.7), the best inequality
of both the sets (4.4) and (4.9), we obtain by means of (6.1):

(6.5) F(S2) = S4+ (- 20 R+r) rs2+ 4r2 (4 R + r)2 ~ O.

If we substitute for S2 the value so2=(l6R-5r)r we have F(S02)=
= -12(R-2r) ~ 0 with equality only for the equilateral triangle. Hence F(S2)
has two real zero's; from (6.5) it follows that S2 is at least the largest of them:

(6.6) S2 ~ -'"- {(20 R - r) + [3 (4R - 5 r) (12 R + r)]l/2},
2

which improves (6.4).
Inequality (4.14) gives rise to

2 r(4R+r)2
S ~ ,

R+r
(6.7)

which is, however, weaker than (6.4).
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