Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. № 544 - № 576 (1976), 166-170.

575. SOME CONSIDERATIONS ON IYENGAR'S INEQUALITY AND SOME RELATED APPLICATIONS*

Gradimir V. Milovanović and Josip E. Pečarić

K. S. K. Iyengar ([1]), by means of geomstrical consideration, has proved the following theorem:

Theorem A. Let f be a differentiable function on $[a, b]$ and $\left|f^{\prime}(x)\right| \leqq M$. Then

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(b-a)(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{4}-\frac{1}{4 M}(f(b)-f(a))^{2} .
$$

In [2] the following generalization of the Theorem A is proved analiticaly:
Theorem B. Let $x \mapsto f(x)$ be a differentiable function defined on $[a, b]$ and $\left|f^{\prime}(x)\right| \leqq M$ for every $x \in(a, b)$. If $x \mapsto p(x)$ is an integrable function on (a, b) such that

$$
0<c \leqq p(x) \leqq \lambda c \quad(\lambda \geqq 1, x \in[a, b]),
$$

the following inequality holds

$$
\left|A(f ; p)-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)}{2} \cdot \frac{(\lambda+q)\left(1-q^{2}\right)+2(\lambda-1) q}{2 \lambda(1+q)-(\lambda-1)\left(1+q^{2}\right)},
$$

where A and q are defined by

$$
A(f ; p)=\frac{\int_{a}^{b} p(x) f(x) \mathrm{d} x}{\int_{a}^{b} p(x) \mathrm{d} x} \text { and } q=\frac{|f(b)-f(a)|}{M(b-a)} .
$$

In the above mentioned paper [2], Theorem B is generalized in the case where $x \mapsto f(x)$ is twice differentiable function defined on $[a, b]$, having the following properties $\left|f^{\prime \prime}(x)\right| \leqq M(\forall x \in(a, b))$ and $f^{\prime}(a)=f^{\prime}(b)$.

In the special case where $p(x) \equiv 1$, the following result, is obtained

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{16}-\frac{1}{4 M}\left(\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)\right)^{2}, \tag{1}
\end{equation*}
$$

what is a generalization of the Theorem A.
In this paper we shall prove a more rigorous inequality in comparison with (1), with considerably weak conditions related to the function f. Also, a generalization of such a result will be done.

[^0]Let's denote by $C_{\alpha}(0<\alpha \leqq 1)$ the space of continuous functions $x \mapsto f(x)$ which satisfy the LIPSCHITZ's condition of the order α ($0<\alpha \leqq 1$). That means, if there exists such a constant $M(=M(f)<+\infty)$ that

$$
|f(x)-f(y)| \leqq M|x-y|^{\alpha} \quad(\forall x, y \in[a, b])
$$

the function f belongs to space C_{α}.
Notice that the norm in the space C_{α} is often introduced by

$$
\|f\|_{\alpha}=\|f\|_{0}+\sup _{\substack{x, y \in[a, b] \\ x \neq y}} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}},
$$

where $\|f\|_{0}=\max _{x \in[a, b]}|f(x)|$.
Theorem 1. Let the function $f:[a, b] \rightarrow \mathbf{R}$ satisfies the following conditions:

$$
\begin{array}{ll}
1^{\circ} & \left.f^{(n-1)} \in C_{\alpha} \text { (with the constant } M \text { and } 0<\alpha \leqq 1\right) ; \\
2^{\circ} & f^{(k)}(a)=f^{(k)}(b)=0 \quad(k=1, \ldots, n-1)
\end{array}
$$

where $n \in \mathbf{N}^{11}$.
Then, the inequality is valid

$$
\begin{align*}
\left\lvert\, \frac{1}{b-a} \int f(x)^{b} \mathrm{~d} x\right. & \left.-\frac{1}{2}(f(a)+f(b)) \right\rvert\, \tag{2}\\
& \leqq \frac{M(b-a)^{\alpha+n-1}}{(\alpha+n)(n)}\left\{\zeta^{\alpha+n-1}-\frac{q}{2}(1+(\alpha+n-1)(2 \zeta-1))\right\},
\end{align*}
$$

where ζ is the real root of the equation

$$
\zeta^{\alpha+n-1}-(1-\zeta)^{\alpha+n-1}=q
$$

and

$$
q=\frac{(\alpha+n-1)^{(n-1)}}{M(b-a)^{\alpha+n-1}}(f(b)-f(a)), p^{(m)}=p(p-1) \ldots(p-m+1) \quad(m \in \mathbf{N}) .
$$

Proof. According to the condition 1°, we have

$$
-M(x-a)^{\alpha} \leqq f^{(n-1)}(x)-f^{(n-1)}(a) \leqq M(x-a)^{\alpha}
$$

and

$$
-M(b-x)^{\alpha} \leqq f^{(n-1)}(b)-f^{(n-1)}(x) \leqq M(b-x)^{\alpha},
$$

i. e.

$$
-M(x-a)^{\alpha} \leqq f^{(n-1)}(x) \leqq M(x-a)^{\alpha}
$$

and

$$
-M(b-x)^{\alpha} \leqq f^{(n-1)}(x) \leqq M(b-x)^{\alpha} .
$$

Using the condition (2) and the $(n-1)$ times successive integration of the last inequalities on (a, x) and (x, b), we get

$$
f(a)-M \frac{(x-a)^{\alpha+n-1}}{(\alpha+n-1)^{(n-1)}} \leqq f(x) \leqq f(a)+M \frac{(x-a)^{\alpha+n-1}}{(\alpha+n-1)^{(n-1)}}
$$

${ }^{1)}$ For $n=1$ it is considered that $f^{(0)} \equiv f$ and the condition 2° does not exist.
and

$$
f(b)-M \frac{(b-x)^{\alpha+n-1}}{(\alpha+n-1)^{(n-1)}} \leqq f(x) \leqq f(b)+M \frac{(b-x)^{\alpha+n-1}}{(\alpha+n-1)^{(n-1)}},
$$

i. e.
(3) $\max \{f(a)-F(x), f(b)-G(x)\} \leqq f(x) \leqq \min \{f(a)+F(x), f(b)+G(x)\}$,
where

$$
F(x)=M \frac{(x-a)^{\alpha+n-1}}{(\alpha+n-1)^{(n-1)}} \quad \text { and } \quad G(x)=M \frac{(b-x)^{\alpha+n-1}}{(n+\alpha-1)^{(n-1)}} .
$$

With regard to
$\min (\alpha, \beta)=\frac{1}{2}(\alpha+\beta-|\beta-\alpha|) \quad$ and $\quad \max (\alpha, \beta)=\frac{1}{2}(\alpha+\beta+|\beta-\alpha|) \quad(\alpha, \beta \in \mathbf{R})$,
inequalities (3) are reduced to

$$
\begin{align*}
-\frac{1}{2} F(b)(g(t)-|q+h(t)|) & \leqq f(a+t(b-a))-\frac{1}{2}(f(a)+f(b)) \tag{4}\\
& \leqq \frac{1}{2} F(b)(g(t)-|q-h(t)|)
\end{align*}
$$

where

$$
g(t)=t^{\alpha+n-1}+(1-t)^{\alpha+n-1} \text { and } h(t)=t^{\alpha+n-1}-(1-t)^{\alpha+n-1} .
$$

Basing on (4), we can deduce that the inequality

$$
\frac{1}{2}(|q+h(t)|+|q-h(t)|) \leqq g(t)
$$

holds, i.e.

$$
\begin{equation*}
\max (|q|,|h(t)|) \leqq g(t) \tag{5}
\end{equation*}
$$

Since $0 \leqq|h(t)| \leqq g(t)(0 \leqq t \leqq 1)$ and

$$
k(n)=\min _{0 \leqq t \leq 1} g(t)=\left\{\begin{array}{cc}
1 & (n=1), \tag{6}\\
\frac{4}{2^{x+n}} & (n>1),
\end{array}\right.
$$

it follows from (5)

$$
\begin{equation*}
|q| \leqq k(n) . \tag{7}
\end{equation*}
$$

On the basis of the above, we conclude that the equation $q-h(t)=0$ has a unique real solution $t=\zeta(\in[0,1])$. Also, the equation $q+h(t)=0$ has a unique real solution $t=1-\zeta$.

Since

$$
\int_{0}^{1}|q-h(t)| \mathrm{d} t=\int_{0}^{1}|q+h(t)| \mathrm{d} t=q(2 \zeta-1)+\frac{2}{\alpha+n}\left(1-\zeta^{\alpha+n}-(1-\zeta)^{\alpha+n}\right),
$$

integrating (4), we get (2).
Thus the Theorem 1 is proved.
Basing on the inequality (7), we can formulate the following result:

Theorem 2. Let the function $f:[a, b] \rightarrow \mathbf{R}$ fulfils conditions as in Theorem 1 and let $k(n)$ be defined by (6). Then, for every $n \in \mathbf{N}$,

$$
\sup _{\substack{x, y \in[a, b] \\ x \neq y}} \frac{\left|f(n-1)(x)-f^{(n-1)}(y)\right|}{|x-y|^{\alpha}} \geqq \frac{(\alpha+n-1)^{(n-1)}}{k(n)(b-a)^{\alpha+n-1}}|f(b)-f(a)| .
$$

From the Theorem 1 immediately follows:
Theorem 3. Let function $f:[a, b] \rightarrow \mathbf{R}$ has a continued derivation of the order $n-1$ and the bounded derivation of the order n, i. e. $\left|f^{(n)}(x)\right| \leqq M(\forall x \in(a, b))$. If $f^{(k)}(a)=f^{(k)}(b)=0(k=1, \ldots, n-1)$, then the inequality

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)^{n}}{(n+1)!}\left\{\zeta^{n}-\frac{q}{2}(1+n(2 \zeta-1))\right\}
$$

holds, where ζ is the real root of the equation

$$
\zeta^{n}-(1-\zeta)^{n}=q \quad\left(q=\frac{n!}{M(b-a)^{n}}(f(b)-f(a))\right)
$$

Using considerations, mentioned above, and solutions of Problems 168 and 169 in [3] (These two problems have been formulated and solved by D. D. Adamović) the following theorem can be proved:

Theorem 4. Let the function $f:[a, b] \rightarrow \mathbf{R}$ fulfils conditions as in Theorem 3.
Then, for every $n \in \mathbf{N}, c_{n} \in(a, b)$ exists, such that

$$
\begin{equation*}
\left|f^{(n)}\left(c_{n}\right)\right| \geqq \frac{2^{n-1} n!}{(b-a)^{n}}|f(b)-f(a)| . \tag{8}
\end{equation*}
$$

This result is the solution of the problem stated by D. S. Mitrinović [4].
Remark. The inequality (8) can be represented in the integral form replacing $f(x)$ by $\int_{a}^{x} g(t) \mathrm{d} t$.
For $n=2$ and $\alpha=1$, the Theorem 1 is reduced to the following corollary:
Corollary 1. Let the function $f:[a, b] \rightarrow \mathbf{R}$ fulfils conditions

$$
\begin{array}{ll}
1^{\circ} & \left|f^{\prime}(x)-f^{\prime}(y)\right| \leqq M|x-y| \\
2^{\circ} & f^{\prime}(a)=f^{\prime}(b)=0
\end{array}
$$

Then

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{24}-\frac{1}{2} \cdot \frac{(f(b)-f(a))^{2}}{M(b-a)^{2}} \tag{9}
\end{equation*}
$$

Note that under the condition 1° (from the Corollary 1) and $f^{\prime}(a)=f^{\prime}(b)$, the inequality (9) is reduced to the inequality

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{24}-\frac{1}{2 M}\left(\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)\right)^{2},
$$

which is evidently more rigorous than the inequality (1).
If, in the Theorem 3, we put $f(a)=f(b)=0\left(\Rightarrow q=0 \Rightarrow \zeta=\frac{1}{2}\right)$, we get

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leqq \frac{M(b-a)^{n+1}}{2^{n}(n+1)!}
$$

The last inequality represents a generalization of the inequality postulated in the Problem 121 [5] (see also [6]).

REFERENCES

1. K. S. K. Iyengar: Note on an inequality. Math. Student 6 (1938), 75-76.
2. P. M. Vasić and G. V. Milovanović: On an inequality of Iyengar. Same Publications № 574 (1976), 18-24.
3. D. S. Mirrinović: Zbornik matematičkih problema I, third edition. Beograd 1962, pp. 450-451.
4. D. S. Mitrinović: Problem 362. Mat. Vesnik 12 (27) (1975), 312.
5. G. Polya and G. Szegö: Problem 121. Aufgaben and Lehrsätzen aus der Analysis I. Berlin 1925, p. 62.
6. D. S. Mitrinović (In cooperation with P. M. Vasić): Analytic inequalities. Berlin Heildelberg - New York, 1970.

[^0]: * Presented October 1, 1976 by R. Ž. Đorøević.

