
UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK.
Ser. Mat. Fiz. N. 544 - N. 576 (1976). 159-165.

574. ON A METHOD OF SOLVING OF CONDITIONAL
CAUCHY EQUATIONS*

Roman Ger

1. Let (G, +), (H, +) and (R, +, .) be two abelian groups and an integral
domain, respectively. In the sequel, unless explicitly stated otherwise, the letter fwill
denote a map of G into R or G into H, according as the operation of multiplication
does occur in the equation considered or does not. Moreover, Z will always stand
for the set f-1 ({o}) and Z': = G~z. By (G : F) we shall denote the index of a
subgroup (F, +) of (G, +).

In [5] (cf. also [2], [4] and [7]) the authors deal with the conditional functional
equation of MIKUSINSKI

(1) f(x+y):;ioO implies f(x+y)=f(x)+f(y).

PL. KANNAPPANand M. KUCZMAhave solved in [12] the equation

(2) f(x+y)-af(x)-bf(y):;ioO implies f(x+y) =f(x) +f(y),

(under certain conditions regarding the characteristic of (R, +, .)) which generalizes
(1) and some so called alternative functional equations (see [6], [13], [14J, [16] and
[17]1). J. DHOMBRESand the present author have investigated in [3] and [4], among
others, the following conditional equations

(3) f(x)+f(y):;ioO implies f(x+y) =f(x) +f(y)

and

f(x+y):;ioO and f(x)+f(y):;ioO implies f(x+y)=f(x)+f(y).

J. ACZEL'S problem [1] may be easily reduced (cf. [11]) to the problem of
finding the solutions of

(5) f(x+y)f(x)f(y):;ioO implies f(x+y)=f(x)+f(y)

(partial answers to that question are given in [11] and [10]). Observe that in the case
where f maps G into R equation (4) may be written in the form

(4)

(4') f(x+y)[f(x)+f(y)]:;ioO implies f(x+y)=f(x)+f(y).

Consequently, in that case, all the above mentioned equations are of the form

(E) cp(J(x), fey), f(x + y)):;io
°

implies f(x + y) = f(x) + fey),

where rp: RL+R is a given function. Observe that in (1), (2) and (3) cp is an affine
function while it is not the case for (4') and (5). The difference seems to be essential
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1) A certain more general equation than (2) has been investigated in [91.
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if the behaviour of solutions is taken into account. Namely, the results obtained in
[5] and [12] state that, roughly speaking, equations (I) and (2) do not admit non-
-additive solutions provided the cardinality of f(G) is greater than three. Similarly,
as was shown in [8] (cf. also an earlier result in [3] obtained under an additional
assumption on the range of J), non-additive solutions of (3) take values in a set
of at most two elements. The situation changes if we deal with equations (4') and
(5); in [4] (cf. also [3]) and [11] the authors exhibit non-additive solutions of (4')
and (5), respectively, with f (G) infinite. Bearing these remarks in mind one might
conjecture that for an arbitrary affine function q>equation (E) admits additive solu-
tions only provided the cardinality of f (G) is greater than three. We shall show
(Theorem 2 below) that this is really the case for a centro affine function q>:
q>(u, v, w) = au + bv + cw and that the conjecture fails for q>(u, v, w) = au + bv + cw + d,
doFO (see 4 below). On the other hand, our simple Theorem I allows to obtain a
unified approach to the question of solving certain equations of the form (E).

2. In this section we do not assume the commutativity of the given groups
(G, +) and (H, +); the integral domain (R, +, .) will not occur. Let us start with
the following

Theorem 1. Assume q>: HL~H to be a given function and suppose that a function

J: G--+H is a solution of (E). Put F(x, y):= q>(j(x),j(y), f (x+y»), x, Yt= G. Thenf
is additive if and only if

(C)
{
for every pair (x, y)E G2 such that f(X+Y)oFf(x)+f(y) there exists
a zEG such that F(X+y,Z)oFO and F(X,y+Z)oFO and F(y,Z)oFO.

Proof. The "only if" part is trivial. Assume (C) and suppose, for the indirect
proof, thatfis not additive, i. e. there exists a pair (x, y) E G2 such thatf (x + y) oFf (x)

+fey). Consequently, on account of (C) and (E), there exists a zE G such that
f(x + y + z) = f(x + y) +fez), f(x + y + z) = f(x) +fey + z)

and

Hence
fey + z) = fey) +fez).

f(x + y) + fez) =f(x) + fey + z) = f(x) + fey) + fez)

f(x+ y) = f(x) + fey),
and thus

contrary to our supposition.
Examples of applicability:
10 MIKUSINSKI'Sequation (1). Suppose that f is a non-additive solution of

(1). Here F(x, y) =f (x+y). On account of Theorem I we have non (C), i. e. there
exists a pair (x, y)E G2 such that f(X+Y)oFf(x)+f(y) and

(6) f(x+y+z)=O or f(y+z)=O, for all zEG.

Relation (6) says that (- y- x+ Z)U( - y+Z) = G or, equivalently, ZU (x+Z) = G.
Hence Z' C x+z. Observe that Z' oF0 (otherwise f would be the zero-function and
hence additive). Taking an sEZ' we get s=x+z, f(z) = 0, OoFf(s)=f(x+z)
=f(x) +f(z) =f(x), i.e. flz'=f(x)oFO. Moreover, we have Z'+Z'CZ. In fact,
take s, tEZ'; if we had s+ fEZ', then

OoFf(x) = f(s+ t) = f(s) + f(t) = 2f(x)
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whence f(x) = 0, a contradiction. On the other hand, (1) implies Z +ZCz. Recal-
ling Lemma 2 from [8] we infer that (Z, + ) is a subgroup of index 2 in (G, +).

Corollary 1. (cf. the main result in [5]). Let f be a soltuion of (1). Then f is additive or

(7) f(X)=
{

0 for xEZ

d=l=O for xEZ'

where Z is such that (Z, +) is a subgroup of (G, +) with (G : Z)=2 and dE H"'--{O}
is an arbitrary constant. Conversely, every such fun(!(ion as well as every additive
function is a solution of (1).

2° DHOMBRES'Sequation (3). Suppose that f is a non-additive solution of
(3). Here F(x, y)=f (x) +f(y). On account of Theorem 1, we have non (C), i. e.
there exists a pair (x, y)E G2 such thatf(x+Y)=I=f(x)+f(y)(whence f(x) +f(y) =0
and f(x+y) =1=0)and

f(x+y)+f(z)=O or f(x)+f(y+z)=O or f(y)+f(z)=O,
for all zEG.

If fez) EE{ - fey), - f(x + y)} = {I(x), - f(x + y)}, then 0 = f(x) + fey + z)
=f(x) + fey) + fez) = fez). Consequently

(8) f(z)E{O, f(x), -f(x+y)}=:T for all zEG.

Note that f is odd (it suffices to put one of the variables equal to the inverse of the
other in (3». Consequently (3) may be written in the form

(9) f(s)=I=f(t) implies f(s-t)=f(s)-f(t).

At first, we shall exclude the possibility: card f(G)=3. In fact, otherwise (8) gives
f(G)=T with O=l=f(x)=I=-f(x+y) =1=0.Since f(x+Y)ET we infer that

(i) f(x + y) = f(x) or (ii) f(x + y) = -f(x + y).

Assume (i). Then O=l=f(y)= - f(x)=I=f(x) and (9) gives the equality fey-x)
=fey) - f(x) = 2f(y) = f(x) (by (3». Hence

0=1=2f(y) = f(2 y) = fey - x) + f(x + y) = 2f(x) = fey),

a contradiction. Assuming (ii), in view of f(x) +f(x +y) =1=0, we infer that

f(x) + f(x+ y) =f(2 x+ y)E T"'--{O},

whence by (8) and the fact that f(x+y) =1=0,f(x)=O and, again, we have come to a
contradiction. Thus card f(G);;;; 2. Since, by our assumption, f is non-additive,
this leads to f(x)=d=l=O, 2 d=O, xE G, or f(G)={O, d}, d=l=O=2d. In the latter
case we have also Z+Z'CZ' whence, by Lemma 1 from [8], we infer that (Z, +)
is a group. Thus we have come to the following

Corollary 2. Let f be a solution of (3). Then f is additive or f(x)=d=l=O=2 d, xE G,
orfisoftheform(7) whereZ is such that(Z, +)isasubgroup of(G, +) and H3d=l=O
=2 d. Conversely, each of the above type function yields a solution of (3).

(Equation (3) has been solved in [3] under the additional assumption that (H, +)
does not possess non-zero elements of order 2; cf. also [8]).
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(10)

3° The conditional CAUCHY equation

f(x)=ff(y) implies f(x+y)=f(x)+f(y).

Assume f to be a solution of (10). It is readily seen that

f(O) = 0 or f = const¥: O.

Suppose that f is non-constant and non-additive. Then Z =f 0 and Z' ¥: 0 . Moreover,
(10) gives immediately Z+Z' CZ' whence, by Lemma 1 from [8], (Z, +) is a group.
Here F (x, y)=f (x) - fey) and, on account of Theorem 1, we have non (C), i. e.
there exists a pair (x, Y)E G2 such thatf(x+y)=ff(x)+f(y) (whence f(x)=f(y»and

fez) = f(x + y) or f(x) = fey + z) or fez) = fey), for all zE G.

If fez) EE{fey), f(x + y)}, then fey) + fez) = f (y + z) = f(x) = fey) whence
fez) = O. Consequently

f(z)E{O, f(x), f(x+ y)} = : T for all zEG.

Let us consider two cases:
(i) card T= 2. Then f is of the form (7).

(ii) card T=3. Then O=ff(x)=ff(x+y)=fO. In particular, f(x)+f(x+y)
=f(2x+y)ET which implies f(x+y)= -f(x). Thus T={O, d, -d}, d=fO,
d::j:.-d. Take an sEf-1({d})= :Zd and tEf-1({-d})= :Z-d' We shall
show that

(11) ZU(Z-s)U(Z-t)=G.

In fact, otherwise, one can find a zE G such thatf(z):f:O,f(z+s)¥:O andf(z+t):f:O.
Suppose ZEZd; then f(z)::j:.f(t) and O::j:.f(z+t)=f(z)+f(t)=d-d=O, a contra-
diction. Analogously, if we had ZEZ-d then f(z)i=f(s) and O::j:.f(z+s)=f(z)+f(s)
=-d+d=O, a contradiction. Relation (11) may equivalently be written in the form

ZU(s+Z)U(t+ Z) = G,

whence, in view of the inclusions: s+ZCZd and t+ZCZ-d,
and Z-d=t+Z. This means that (G : Z)=3 and

{

0 for xEZ
(12) f(x) = d for xEZ1

- d for xEZ2,

where Z1, Z2 denote the cosets of Z. Thus we have come to the following

Corollary 3. Let f be a solution of (10). Then f is additive or f = const or f is of the
form (7) where Z is such that (Z, +) is a subgroup of (G, +), or f is of the form (12)
where Z is such that (Z, +) is a subgroup of (G, +) with (G : Z)=3, Z1>Z2 are the
cosets of Z and dE H",-{O} is an arbitrary constant.
(Under several additional assumptions (10) has been investigated in [12]; cf. also
[15]).

3. Now, we are going to solve the functional equation of the type (E) with
an arbitrary centroaffine function 'P: R3-+R in the class of functions f:G-+R
where (G, +) is a commutative group and (R, +, .) is an arbitrary integral domain
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(with no restrictions on its characteristic). The explicit form of our conditional
CAUCHYequation reads as follows:

(13) af(x) + bf(y) + cf(x + y)
=1= 0 implies f(x + y) = f(x) + fey).

Its solutions are described by the following

Theorem 2. Let f : G--+R be a solution of (13). Then the following cases are the only
possible ones;

(i) a=b=c=O and f is arbitrary;
(ii) a, b, c are arbitrary and f is additive;
(iii) a+b+c=O and f is constant;
(iv) b=-a, c=O and f is of the form (7) where (Z, +) is a subgroup of

(G, +) with (G : Z»2 and dER"'{O};
(v) char (R, +, ')=2, b=l=-a, c=a-b andfis as in (iv) with 2d=0;
(vi) b=-a, c is arbitrary andf is of the form (7) where (Z, +) is a subgroup

of (G, +) with (G : Z)=2 and dER"'{O};
(vii) a=b=O, c=l=Oand f is as in (vi);
(viii) c=a+b and f is of the form (12) where (Z, +) is a subgroup of (G, +)

with (G : Z)=3 and dER with 2 d=l=O.

Conversely, each of the above type function yields a solution of (13).

Proof. Suppose f to be a non-constant and non-additive solution of (13).
Putting y=O in (13) we infer that

(a + c) f(x) =1= -
bf(O) implies f(O) = 0, xE G.

If we had f(O) =1=0,then (a+c)f(x)=bf(O), xE G, and in case b=l=Owe would have
a+c=l=Oandf = const, contrary to our assumption; in case b=O we c)me to c=-a
and equation (13) assumes the form

af(x)-af(x+Y)=I=0 implies f(x+y) =f(x) +f(y).

Putting here x=O we get a [f(O) -
f(y)] =0, yE G. Then either a=O and we have

case (i) or f(y)=f(O), yE G, a contradiction. Thus, in the sequel, we may assume

(14) f(O) = o.
Next, we shall show that f satisfies (10). For, interchanging x and y in (13) and
subtracting we get easily the following relation

f(x + y)
=1=

f(x) + fey) implies (a - b)[f(x) - f(y)] = 0,

which is simply (10) provided a=l=b.Assume a=b. Then a=O and c=O leads to (i)
whereas a=O and c=l=Oreduces (13) to MIKUSINSKI'Sequation (1) and we have case
(vii) (cf. Corollary 1). The conjunction a=l=Oand c=-a is evidently excluded;
consequently, in what follows, we may assume

(15) b=a=l=0 and a+c=l=O.

Observe that f must be odd; in fact, putting y=-x (13) we get in view of (14) and
(15) that f( - x)= -f(x), xE G. Take a pair (x, y)E G2 such that

f(y)=I=f(x+ y) - f(x) = f(x+ y) + f( - x).
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On account of (13) we get

a [f(x+ y) - f(x)] + cf(y) = 0
as well as

a [lex) + fey)] + cf(x + y) = O.

Adding the last two equalities side by side we obtain

(a+ c) [f(x+ y) + fey)] = 0,

whence, by virtue of (15), we have f(x+y) +f(y) =0. Since the roles of x and y
are symmetric, we have also f(x+y) +f(x) =0 and, consequently, f(x)=f(y). This
proves that f satisfies (10) in case (15), too. According to Corollary 3, f is of the form
(7) where (Z, +) is a subgroup of (G, +) and dE R""{O} or f is of the form (12)
where (Z, +) is a subgroup of index 3 in (G, +), ZI, Z2 are the cosets of Z and
dE R""{O}. Evidently, (10) need not be equivalent to (13) and we must check whether
these functions yield solutions of (13). Regarding the first possibility we shall distin-
guish two cases: (G : Z»2 and (G : Z)=2. In the first one, taking x, yEZ' such
that x+yEZ we get

implies 0=2d,

whereas for x, yEZ' such that x+yEZ' we obtain

(16) (a+ b+ c) d*O implies d=2d.

Thus, b=-a implies c=O and hence case (iv) whereas b*-a gives 2 d=O and,
consequently, char (R, +, ')=2, as well as c=-a-b, i. e. case (v). In the case
where (G : Z)=2 relation (16) disappears and, since 2 d*O (otherwise, f would
be additive), we get b=-a with no restrictions on c, that is case (vi).

Regarding the possibility thatfis ofthe form (12), take x, yE:: Z1;then X+yEZ2
whence

(a+b-c)d*O implies - d = 2 d.

Since 3 d=O is excluded (otherwise, f would be additive) we infer that c=a+b
coming to case (viii).

Finally, it is readily seen that every additive function f : G--+R satisfies (13)
independently of the values of a, band c (case (ii)) as well as that a constant function
G3xf-';>-f(x)=dER",,{0} is a solution of (3) if and only if a+b+c=O (case (iii)).

The last part of the theorem is obvious. Thus our proof has been completed.

REMARK 1. BeClring in mind the solut:ons of (3) (cf. Corollary 2) one may ask why some of them
are not included in ClseS occurring in the statement of Theorem 2. Indeed, the case where a=b= 1,
c=O and f is of the form (7) with (Z, +) being a subgroup of index greater than 2 in (G, +) and
di=O=2d, does not occur expEcitly in Theorem 2. Observe, however, that the condition di=O=2d
implies char(R, +, .)=2 whence O=c=--a-b=-2a, b=-a=l, i.e. we have case (iv). Simi-
larly, the constant solut'on f(x)=d, xEG, of (3) with di=O=2d does occur if and only if
char (R, +, .)=2; then we have a+b+c=2 a=O in (13) and the solution is involved in (iii).

REMARK2. Our proof of Theorem 2 does not require the knowledge of solutions of DHOMBRES'S
equation (3).

REMARK3. Theorem 2 generalizes the main result from [12] not only in that c is not assumed to be
a unit of (R, +, .) (in pClrticular, DHOMBRES'Sequation is not involved in (2)) but also in that the
characteristic of the integral domain (R, +, .) may be quite arbitrary. The authors of [12] assume
the chClracteristic zero (in genuine, their proof method requires the characteristic to be different
from 2 and 3; this fact is explicitly underlined in the final remark in [12]).
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4. Now, we are going to exhibit an example showing that if the function tpin
Theorem 1 is affine but not centroaffine, then equation (E) admits nonadditive
solutions whose range is of cardinality greater than three (in fact - infinite). For,
take (G, + )=(R, +) - the additive group of all real numbers and (R, +, .)=
=(R, +, .) - the integral domain of all real numbers with the usual addition and
multiplication. Define tp : R3~R by the formula

tp(u, v, w): =w-u-v- I, (u, V, w)ER3.

The corresponding functional equation

(17) f(x+y)*f(x)+f(y) + I implies f(x + y) =f(x) + fey)

is evidently satisfied by a non-additive function R3x~f(x): =[xJ (entier
The general solution of (E) with an affine but not centro affine function tp
known to me even in the case of equation (17).

of x).
is not
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