553. SOME NUMBERS RELATED TO THE STIRLING NUMBERS OF THE FIRST AND SECOND KIND*

Leonard Carlitz

1. The Stirling numbers of the first and second kind are defined by

$$
\begin{equation*}
x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S(n, k) x(x-1) \cdots(x-k+1), \tag{1.2}
\end{equation*}
$$

respectively. They satisfy the recurrences

$$
\begin{gather*}
S_{1}(n+1, k)=S_{1}(n, k-1)+n S_{1}(n, k), \tag{1.3}\\
S(n+1, k)=S(n, k-1)+k S(n, k) . \tag{1.4}
\end{gather*}
$$

It is not difficult to show that $S_{1}(n, n-k)$ and $S(n, n-k)$ are polynomials in n of degree $2 k$. Moreover

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=0}^{k-1} S_{1}^{\prime}(k, j)\binom{n}{2 k-j} \quad(k>0) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n, n-k)=\sum S^{\prime}(k, j)\binom{n}{2 k-j} \quad(k>0) \tag{1.6}
\end{equation*}
$$

The coefficients $S_{1}^{\prime}(k, j), S^{\prime}(k, j)$ were introduced by Jordan [10, Ch. 4] and Ward [12]. We are using the notation of [6]. See also [13].

The Eulerian numbers $A_{n, k}$ are usually defined by ([3], [11, Ch. 8])

$$
\begin{equation*}
\frac{1-\lambda}{1-\lambda e^{x(1-\lambda)}}=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \sum_{k=1}^{n} A_{n, k} \lambda^{k} . \tag{1.7}
\end{equation*}
$$

They satisfy the recurrence

$$
\begin{equation*}
A_{n+1, k}=(n-k+2) A_{n, k-1}+k A_{n, k} \tag{1.8}
\end{equation*}
$$

as well as

$$
\begin{equation*}
x^{n}=\sum_{k=1}^{n} A_{n, k}\binom{x+k-1}{n} . \tag{1.9}
\end{equation*}
$$

Supported in part by NSF grant GP-37924 X.

* Presented June 29, 1976 by D. S. Mitrinović.

The representation (1.9) suggests that it may be of interest to consider representations of this kind for $S_{1}(n, n-k)$ and $S(n, n-k)$. Some general results on such representations are discussed in some detail in [8] but will not be needed. We shall show that

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=1}^{k} B_{1}(k, j)\binom{n+j-1}{2 k} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n, n-k)=\sum_{j=1}^{k} B(k, j)\binom{n+j-1}{2 k} \tag{1.11}
\end{equation*}
$$

Moreover we find that

$$
\begin{equation*}
B_{1}(k, j)=B(k, k-j+1) \quad(1 \leqq j \leqq k) \tag{1.12}
\end{equation*}
$$

We shall also show that

$$
\begin{equation*}
B_{1}(k, j)=a_{k, j} \tag{1.13}
\end{equation*}
$$

where the $a_{k, j}$ are numbers that first occurred in an entirely different connection [4].

Combinatorial interpretations of the $S_{1}(n, k), S(n, k), S_{1}{ }^{\prime}(n, k), S^{\prime}(n, k)$ are known [6], [11, Ch. 4]. However no combinatorial interpretation of $B_{1}(n, k)$ or $B(n, k)$ is known.
2. Since $S_{1}(n, n-k)$ is a polynomial in n of degree $2 k$, we may put

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=0}^{2 k} B_{1}(k, j)\binom{n+j-1}{2 k} \tag{2.1}
\end{equation*}
$$

However it follows from (1.5) that $B_{1}(k, 0)=0, B_{1}(k, j)=0 \quad(k<j \leqq 2 k)$. Thus (2.1) reduces to

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{j=1}^{k} B_{1}(k, j)\binom{n+j-1}{2 k} \tag{2.2}
\end{equation*}
$$

By (1.3),

$$
\begin{equation*}
S_{1}(n+1, n-k+1)=S_{1}(n, n-k)+n S_{1}(n, n-k+1) \tag{2.3}
\end{equation*}
$$

Thus

$$
\begin{array}{r}
\sum_{j=1}^{k} B_{1}(k, j)\binom{n+j}{2 k}-\sum_{j=1}^{k} B_{1}(k, j)\binom{n+j-1}{2 k}=n \sum_{j=1}^{k-1} B_{1}(k-1, j)\binom{n+j-1}{2 k-2} \\
=\sum_{j=1}^{k-1} B_{1}(k-1, j)\binom{n+j-1}{2 k-2}((n-2 k+j+1)+(2 k-j-1)) \\
=\sum_{j=1}^{k-1} B_{1}(k-1, j)\left\{(2 k-1)\binom{n+j-1}{2 k-1}\right. \\
\left.+(2 k-j-1)\left(\binom{n+j}{2 k-1}-\binom{n+j-1}{2 k-1}\right)\right\}
\end{array}
$$

so that

$$
\begin{aligned}
& \sum_{j=1}^{k} B_{1}(k, j)\binom{n+j-1}{2 k-1}=(2 k-1) \sum_{j=1}^{k-1} B_{1}(k-1, j)\binom{n+j-1}{2 \mathrm{k}-1} \\
& \quad+\sum_{j=2}^{k}(2 k-j) B_{1}(k-1, j-1)\binom{n+j-1}{2 k+1}-\sum_{j=1}^{k-1}(2 k-j-1) B_{1}(k-1, j)\binom{n+j-1}{2 k-1}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
B_{1}(k, j)=(2 k-j) B_{1}(k-1, j-1)+j B_{1}(k-1, j) \quad(1 \leqq j \leqq k) \tag{2.4}
\end{equation*}
$$

Since $S_{1}(n, n-1)=\binom{n}{2}$, it is evident that

$$
\begin{equation*}
B_{1}(1,1)=1, \quad B_{1}(1, j)=0 \quad(j>1) \tag{2.5}
\end{equation*}
$$

The numbers $B_{1}(k, j)$ are completely determined by (2.4) and (2.5).
The following table is easily computed.

$B_{1}(k, j):$| k^{\prime} | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | | | | |
| 2 | 1 | 2 | | | |
| 3 | 1 | 8 | 6 | | |
| 4 | 1 | 22 | 58 | 24 | |
| | | -1 | 52 | 328 | 444 |

Turning next to $S(n, k)$, we have

$$
\begin{equation*}
S(n, n-k)=\sum_{j=1}^{k} B(k, j)\binom{n+j-1}{2 k} \tag{2.6}
\end{equation*}
$$

By (1.4),
(2.7) $\quad S(n+1, n-k+1)=S(n, n-k)+(n-k-1) S(n, n-k+1)$,
so that

$$
\begin{aligned}
\sum_{j=1}^{k} B(k, j)\binom{n+j}{2 k} & -\sum_{j=1}^{k} B(k, j)\binom{n+j-1}{2 k} \\
& =\sum_{j=1}^{k-1} B(k-1, j)\binom{n+j-1}{2 k-2}((n-2 k+j+1)++(k-j)) \\
& =(2 k-1) \sum_{j=1}^{k-1} B(k-1, j)\binom{n+j-1}{2 k-1} \\
& +\sum_{j=1}^{k-1}(k-j) B(k-1, j)\left(\binom{n+j}{2 k-1}-\binom{n+j-1}{2 k-1}\right) .
\end{aligned}
$$

It follows that
(2.8) $\quad B(k, j)=(k-j+1) B(k-1, j-1)+(k+j-1) B(k-1, j) \quad(1 \leqq j \leqq k)$.

Since $S(n, n-1)=\binom{n}{2}$ we hawe

$$
\begin{equation*}
B(1,1)=1, \quad B(1, j)=0 \quad(j>1) \tag{2.9}
\end{equation*}
$$

The $B(k, j)$ are completely determined by (2.8) and (2.9).
3. In (2.8) replace j by $k-j+1$ and we get

$$
\begin{equation*}
B(k, k-j+1)=j B(k-1, k-j)+(2 k-j) B(k-1, k-j+1) \quad(1 \leqq j \leqq k) \tag{3.1}
\end{equation*}
$$

If we put $\bar{B}(k, j)=B(k, k-j+1)$, (3.1) becomes

$$
\bar{B}(k, j)=j \bar{B}(k-1, j)+(2 k-j) \cdot B(k-1, j-1) \quad(1 \leqq j \leqq k) .
$$

Also, by (2.9),

$$
\begin{equation*}
\bar{B}(1,1)=1, \quad \bar{B}(1, j)=0 \quad(j>1) . \tag{3.3}
\end{equation*}
$$

Therefore, comparison with (2.4) and (2.5) yields

$$
\begin{equation*}
B_{1}(k, j)=B(k, k-j+1) \quad(1 \leqq j \leqq k) \tag{3.4}
\end{equation*}
$$

An explicit formula formula for $B(k, j)$ can be found in the following way. Multiply both sides of (2.6) by x^{n} and sum over n. Since

$$
\begin{aligned}
& \sum_{n=k}^{+\infty} x^{n-k} \sum_{j=1}^{k} B(k, j)\binom{n+j-1}{2 k}=\sum_{j=1}^{k} B(k, j) x^{k-j+1} \sum_{n=k}^{+\infty}\binom{n+j-1}{2 k} x^{n-2 k+j-1} \\
& \quad=\sum_{j=1}^{k} B(k, j) x^{k-j+1} \sum_{n=0}^{+\infty}\binom{n+2 k}{2 k} x^{n}=(1-x)^{-2 k-1} \sum_{j=1}^{k} B(k, j) x^{k-j+1} \\
& \quad=(1-x)^{-2 k-1} \sum_{j=1}^{k} B(k, k-j+1) x^{j}
\end{aligned}
$$

we get

$$
\begin{equation*}
\sum_{j=1}^{k} B(k, k-j+1) x^{j}=(1-x)^{2 k+1} \sum_{t=0}^{+\infty} S(t+k, t) x^{t} \quad(k>0) . \tag{3.5}
\end{equation*}
$$

Comparison of coefficients gives

$$
\begin{equation*}
B(k, k-j+1)=\sum_{t=0}^{j}(-1)^{j-t}\binom{2 k+1}{j-t} S(t+k, t) \tag{3.6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
B(k, k-j+1)=\sum_{t=0}^{j}(-1)^{j-t}\binom{2 k+1}{j-t} \frac{1}{t!} \sum_{s=0}^{t}(-1)^{t-s}\binom{t}{s} s^{t^{t+k}} \tag{3.7}
\end{equation*}
$$

Analogous to (3.6), we hawe also

$$
\begin{equation*}
B_{1}(k, k-j+1)=\sum_{t=0}^{j}(-1)^{j-t}\binom{2 k+1}{j-t} S_{1}(t+k, t) \tag{3.8}
\end{equation*}
$$

In view of (3.4) we may state

$$
\begin{equation*}
B(k, j)=\sum_{t=0}^{j}(-1)^{j-t}\binom{2 k+1}{j+t} S_{1}(t+k, t) \tag{3.9}
\end{equation*}
$$

By (1.11) and (3.9),

$$
\begin{aligned}
S(n, n-k) & =\sum_{j=1}^{k}\binom{n+j-1}{2 k} \sum_{t=0}^{j}(-1)^{j-t}\binom{2 k+1}{j-t} S_{1}(t+k, t) \\
& =\sum_{t=0}^{k} S_{1}(t+k, t) \sum_{j=t}^{k}(-1)^{j-t}\binom{2 k+1}{j-t}\binom{n+j-1}{2 k}
\end{aligned}
$$

The inner sum on the extreme right can be summed by SAALCHÜTz's theorem [1, p. 9] and we find, after some manipulation, that

$$
\begin{equation*}
\sum_{j=1}^{k}(-1)^{j-t}\binom{2 k+1}{j-t}\binom{n+j-1}{2 k}=\binom{k+n}{k-t}\binom{k-n}{k+t} \tag{3.10}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
S(n, n-k)=\sum_{t=0}^{k}\binom{k+n}{k-t}\binom{k-n}{k+t} S_{1}(t+k, t) \tag{3.11}
\end{equation*}
$$

To express $S_{1}(n, k)$ in terms of $S(n, k)$, we take

$$
\begin{aligned}
S_{1}(n, n-k) & =\sum_{j=1}^{k} B_{1}(k, j)\binom{n+j-1}{2 k}=\sum_{j=1}^{k} B(k, k-j+1)\binom{n+j-1}{2 k} \\
& =\sum_{j=1}^{k}\binom{n+j-1}{2 k} \sum_{t=0}^{j}(-1)^{j-t}\binom{2 k+1}{j-t} S(t+k, t) \\
& =\sum_{t=0}^{k} S(t+k, t) \sum_{j=t}^{k}(-1)^{j-t}\binom{2 k+1}{j-t}\binom{n+j-1}{2 k} .
\end{aligned}
$$

Hence, by (3.10),

$$
\begin{equation*}
S_{1}(n, n-k)=\sum_{t=0}^{k}\binom{k+n}{k-t}\binom{k-n}{k+t} S(t+k, t) \tag{3.12}
\end{equation*}
$$

Note that the coefficients on the right of (3.11) and (3.12) are the same. The formulas (3.11) and (3.12) are not new; for references see [7] and [9].
4. While we have obtained an explicit formula for $B(k, j)$ in (3.7), we have been unable to find a simple generating function. However the following results are of some interest in this connection.

Put

$$
\begin{equation*}
e^{n z}=\sum_{r=0}^{n} \frac{(n z)^{r}}{r!}+\frac{(n z)^{n}}{n!} S_{n}(z) \tag{4.1}
\end{equation*}
$$

whers n is a positive integer and z is an arbitrary complex number. BUCKHOLTZ [2] proved that, for $k \geqq 1$,

$$
S_{n}(z)=\sum_{r=0}^{k-1} n^{-r} U_{r}(z)+O\left(n^{-k}\right)
$$

uniformly in a certain region of the z-plane. The coefficients $U_{r}(z)$ are determined by

$$
\begin{equation*}
U_{r}(z)=(-1)^{r}\left(\frac{z}{1-z} \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{r} \frac{z}{1-z} . \tag{4.2}
\end{equation*}
$$

It follows from (4.2) that

$$
\begin{equation*}
U_{r}(z)=(-1)^{r}(1-z)^{-2 r-1} Q_{r}(z) \tag{4.3}
\end{equation*}
$$

where, for $r \geqq 1, Q_{r}(z)$ is a polynomial of degree r with positive integral coefficients.

The writer [4] showed that, if we put

$$
\begin{equation*}
Q_{k}(z)=\sum_{j=1}^{k} a_{k j} z^{j} \quad(k \geqq 1) \tag{4.4}
\end{equation*}
$$

then the $a_{k j}$ satisfy the recurrence

$$
\begin{equation*}
a_{k j}=j a_{k-1, j}+(2 k-j) a_{k-1, j-1} \quad(1 \leqq j \leqq k) \tag{4.5}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
a_{11}=1, \quad a_{i j}=0 \quad(j>1) . \tag{4.6}
\end{equation*}
$$

Therefore, comparing (4.5) with (3.2), we have at once

$$
\begin{equation*}
a_{k j}=B_{1}(k, j)=B(k, k-j+1) \tag{4.7}
\end{equation*}
$$

Put $f_{j}(x)=\sum_{k=j}^{\infty} a_{k j} x^{k}(j=1,2, \ldots)$. Then, by (4.5),

$$
f_{j}(x)=\sum_{k=j}^{\infty}\left(j a_{k-1}, j+(2 k-j) a_{k-1, j-1}\right) x^{k}
$$

which gives

$$
\begin{equation*}
(1-j x) f_{j}(x)=x\left(2 x \frac{\mathrm{~d}}{\mathrm{~d} x}-j+2\right) f_{j-1}(x) \quad(j>1) \tag{4.8}
\end{equation*}
$$

For example, since $f_{1}(x)=x /(1-x), f_{2}(x)=\frac{2 x^{2}}{(1-x)^{2}(1-2 x)}$, so that

$$
\begin{equation*}
a_{k 2}=2^{k+1}-2 k-2 \quad(k=0,1,2, \ldots) \tag{4.9}
\end{equation*}
$$

Generally, it follows from (4.8) that

$$
\begin{equation*}
f_{j}(x)=\frac{x^{j} P_{j}(x)}{(1-x)^{j}(1-2 x)^{j-1} \cdots(1-j x)} \quad(j=1,2, \ldots), \tag{4.10}
\end{equation*}
$$

where $P_{j}(x)$ is a polynomial in x of degree $<\frac{1}{2} j(j-1), j>1$, that satisfies the recurrence

$$
\begin{equation*}
P_{j}(x)=(1-x) \cdots(1-(j-1) x)\left\{2 x \frac{\mathrm{~d}}{\mathrm{~d} x}+2 \sum_{s=1}^{j-1} \frac{s(j-s) x}{1-s x}+j\right\} P_{j-1}(x)(j>1) \tag{4.11}
\end{equation*}
$$

For example, since $P_{1}(x)=1$, we hawe

$$
\begin{aligned}
& P_{2}(x)=(1-x)\left(2 x \frac{\mathrm{~d}}{\mathrm{~d} x}+\frac{2 x}{1-x}+2\right) \cdot 1=2 \\
& P_{3}(x)=(1-x)(1-2 x)\left(2 x \frac{\mathrm{~d}}{\mathrm{~d} x}+\frac{4 x}{1-x}+\frac{4 x}{1-2 x}+3\right) \cdot 2=6-2 x-6 x^{2} .
\end{aligned}
$$

It follows from (4.10) or otherwise that

$$
\begin{equation*}
a_{k j}=\sum_{s=0}^{j} \Phi_{j, s}(k)(j-s)^{k}, \tag{4.12}
\end{equation*}
$$

where $\Phi_{j, s}(k)$ is a polynomial in k of degree s. Indeed, by (3.7),

$$
\begin{aligned}
B(k, k-j+1) & =\sum_{s=0}^{j} s^{k} \sum_{t=s}^{j}(-1)^{j-t}\binom{2 k+1}{j-t}\binom{t}{s} \frac{s^{t}}{t!} \\
& =\sum_{s=0}^{j}(j-s)^{k} \sum_{t=j-s}^{j}(-1)^{j-t}\binom{2 k+1}{j-t}\binom{t}{s} \frac{s^{t}}{t!},
\end{aligned}
$$

so that

$$
\begin{equation*}
\Phi_{j, s}(k)=\sum_{t=0}^{s}(-1)^{t}\binom{2 k+1}{t}\binom{j-t}{s} \frac{s^{t}}{(j-t)!} . \tag{4.13}
\end{equation*}
$$

Using (3.7) we get

$$
\begin{gathered}
a_{k 2}=B(k, k-1)=2^{k+1}-2 k-2, \\
a_{k 3}=B(k, k-2)=\frac{1}{2} 3^{k+2}-(2 k+2) 2^{k+1}+\frac{1}{2}+\binom{2 k+2}{3} .
\end{gathered}
$$

REFERENCES

1. W. N. Bailey: Generalized Hypergeometric Series. Cambridge, 1935.
2. J. D. Buckholtz: Concerning an approximation of Copson. Proc. Amer. Math. Soc. 14 (1963), 564-568.
3. L. Carlitz: Eulerian numbers and polynomials. Math. Mag. 33 (1959), 47-60.
4. L. Carlitz: The coefficients in an asymptotic expansion. Proc. Amer. Math. Soc. 16 (1965), 248-252.
5. L. Carlitz: The coefficients in an asymptotic expansion and certain related numbers. Duke Math. J. 35 (1968), 83-90.
6. L. Carlitz: Note on the numbers of Jordan and Ward. Duke Math. J. 38 (1971), 783-790.
7. L. Carlitz: Note on Nörlund's polynomial $B_{n}{ }^{(z)}$. Proc. Amer. Math. Soc. 11 (1960), 452-455.
8. L. Carlitz: Polynomial representations and compositions I. Houston J. Math. 1 (1975), 23-45.
9. H. W. Gould: Stirling number representation problems. Proc. Amer. Math. Soc. 11 (1960), 447-451.
10. C. Jordan: Calculus of Finite Differences. New York, 1947.
11. J. Riordan: An Introduction to Combinatorial Analysis. New York, 1958.
12. M. Ward: The representation of Stirling's numbers and Stirling's polynomials as sums of factorials. Amer. J. Math. 56 (1934), 87-95.
13. M. Žrvković: On a representation of Stirling's numbers of the first kind. These Publications, № 498 - № 541 (1975), 217-221.
