Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. № 544 - № 576 (1976), 39 -42.

551. EQUIVALENT L_{p}-NORMS OF SUBADDITIVE FUNCTIONS*

Paul R. Beesack

In this paper we prove the following theorem which is an extension of a result of R. P. Gosselin [3]. Gosselin's result is essentially the special case $F(x)=|x|^{n+p \alpha}$, and the following proof is a modification of that in [3].
Theorem. Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be positive, measurable, and subadditive, and let $0<p<+\infty$. Let F be positive and measurable on $\mathbf{R}^{\boldsymbol{n}}$ and satisfy the following condition: if $\omega_{0}, \omega_{1}, \omega_{2}$ are unit vectors in \mathbf{R}^{n} such that $\omega_{0}=r_{1} \omega_{1}+r_{2} \omega_{2}$ for some $r_{1}, r_{2} \in \mathbf{R}$ then

$$
\begin{equation*}
F\left(r \omega_{0}\right) \geqq K\left(\left|r_{i}\right|\right) F\left(r r_{i} \omega_{i}\right) \text { for } r \geqq 0, i=1,2, \tag{1}
\end{equation*}
$$

where $K: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is measurable, $\inf \{K(r): \alpha \leqq r \leqq \beta\}>0$ for $0<\alpha<\beta<+\infty$, and $\int_{0}^{1} r^{-n} \mathrm{~d} r / K(r)<+\infty$. Let $\omega_{1}, \ldots, \omega_{n}$ be linearly independent unit vectors, and set

$$
\begin{equation*}
M(\omega)=\int_{0}^{+\infty} \frac{\varphi^{p}(r \omega) r^{n-1}}{F(r \omega)} \mathrm{d} r . \tag{2}
\end{equation*}
$$

There exist constants A, B depending on K, p, n such that

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} \frac{\varphi^{p}(x)}{F(x)} \mathrm{d} x \leqq A \sum_{i=1}^{n} \max \left[M\left(\omega_{i}\right), M\left(-\omega_{i}\right)\right] \leqq B \int_{\mathbf{R}^{n}} \frac{\varphi^{p}(x)}{F(x)} \mathrm{d} x . \tag{3}
\end{equation*}
$$

By taking $r_{1}=1, r_{2}=0$ we observe that (1) implies $K(1) \leqq 1$. For Gosselin's result, (1) holds with $K(s) \equiv s^{-(n+p \alpha)}$. To prove the theorem we write $x=r \omega$, where
$\omega=\left(\cos \varphi_{1}, \sin \varphi_{1} \cos \varphi_{2}, \ldots, \sin \varphi_{1} \cdots \sin \varphi_{n-2} \cos \varphi_{n-1}, \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{n-1}\right)$, and let

$$
\Omega=\left\{\omega \in \mathbf{R}^{n}:|\omega|=1\right\}=\left\{\omega: 0 \leqq \varphi_{j} \leqq \pi, 1 \leqq j \leqq n-2,0 \leqq \varphi_{n-1} \leqq 2 \pi\right\} .
$$

With $\mathrm{d} \omega=\sin \varphi_{n-2} \sin ^{2} \varphi_{n-3} \cdots \sin ^{n-2} \varphi_{1} \mathrm{~d} \varphi_{1} \cdots \mathrm{~d} \varphi_{n-1}$, we have [2, p. 268]

$$
\int_{\mathbf{R} n} f(x) \mathrm{d} x=\int_{\Omega}\left(\int_{0}^{+\infty} f(r \omega) r^{n-1} \mathrm{~d} r\right) \mathrm{d} \omega .
$$

Using this notation, we now appeal to Gosselin's Lemma [3]:

[^0]There exist constants a, b, c with $0<a<b<+\infty, 0<c<1$ (in fact $\frac{1}{2}<$ $<c<1$) such that if Γ is a measurable subset of Ω for which

$$
\begin{equation*}
|\Gamma|_{s} \equiv \int_{\Gamma} \mathrm{d} \omega \geqq c|\Omega|_{s}, \tag{4}
\end{equation*}
$$

then for each $\omega \in \Omega$ there exist $\omega_{1}, \omega_{2} \in \Gamma$ and $r_{1}, r_{2} \in[a, b]$ such that

$$
\begin{equation*}
\omega=r_{1} \omega_{1}+r_{2} \omega_{2} . \tag{5}
\end{equation*}
$$

Now let $M=\int_{\mathbf{R}^{n}}\left\{\varphi^{p}(x) / F(x)\right\} \mathrm{d} x$, so that by (2) and the preceding we have

$$
\begin{equation*}
M=\int_{\Omega} M(\omega) \mathrm{d} \omega . \tag{6}
\end{equation*}
$$

As in [3], we first show there is a constant $D=D(n, p, K)$ such that

$$
\begin{equation*}
M(\omega) \leqq D M \text { for } \omega \in \Omega \tag{7}
\end{equation*}
$$

To this end, let $\Gamma=\left\{\omega \in \Omega: M(\omega) \leqq M\left[(1-c)|\Omega|_{s}\right]^{-1}\right\}$, with c as in (4), and let $\Gamma^{\prime}=\Omega \backslash \Gamma$. Then

$$
\omega \in \Gamma^{\prime} \Rightarrow M(\omega)>\frac{M}{(1-c)|\bar{\Omega}|_{s}},
$$

so by (6),

$$
M \geqq \int_{\Gamma^{\prime}} M(\omega) \mathrm{d} \omega>\frac{M}{(1-c)|\Omega|_{s}} \int_{\Gamma^{\prime}} \mathrm{d} \omega=\frac{M\left(|\Omega|_{s}-|\Gamma|_{s}\right)}{(1-c)|\Omega|_{s}},
$$

whence $|\Gamma|_{s}>c|\Omega|_{s}$. By the lemma, given $\omega \in \Omega$ we may write $\omega=r_{1} \omega_{1}+r_{2} \omega_{2}$ where $\omega_{1}, \omega_{2} \in \Gamma$ and $r_{1}, r_{2} \in[a, b]$. Hence for $r \geqq 0$, by subadditivity,

$$
\begin{gathered}
\varphi(r \omega)=\varphi\left(r r_{1} \omega_{1}+r r_{2} \omega_{2}\right) \leqq \varphi\left(r r_{1} \omega_{1}\right)+\varphi\left(r r_{2} \omega_{2}\right), \\
\varphi^{p}(r \omega) \leqq C_{p}\left\{\varphi^{p}\left(r r_{1} \omega_{1}\right)+\varphi^{p}\left(r r_{2} \omega_{2}\right)\right\},
\end{gathered}
$$

where $C_{p}=2^{p-1}$ if $p \geqq 1$ or $C_{p}=1$ if $0<p \leqq 1$. By (1), (2),

$$
M(\omega) \leqq C_{p} \int_{0}^{+\infty} \frac{\varphi^{p}\left(r r_{1} \omega_{1}\right)}{K\left(r_{1}\right) F\left(r r_{1} \omega_{1}\right)} r^{n-1} \mathrm{~d} r+C_{p} \int_{0}^{+\infty} \frac{\varphi^{p}\left(r r_{2} \omega_{2}\right)}{K\left(r_{2}\right) F\left(r r_{2} \omega_{2}\right)} r^{n-1} \mathrm{~d} r .
$$

Setting $r=r_{i}^{-1} s$ this reduces to

$$
M(\omega) \leqq C_{p}\left\{-\frac{M\left(\omega_{1}\right)}{r_{1}^{n} K\left(r_{1}\right)}+\frac{M\left(\omega_{2}\right)}{r_{2}^{n} K\left(r_{2}\right)}\right\} \leqq \frac{M C_{p}}{(1-c)|\Omega|_{s}}\left\{\frac{1}{r_{1}^{n} K\left(r_{1}\right)}+\frac{1}{r_{2}^{n} K\left(r_{2}\right)}\right\}
$$

because $\omega_{1}, \omega_{2} \in \Gamma$. This proves (7) with

$$
\begin{equation*}
D=\frac{C_{p}}{(1-c)|\Omega|_{s}} \cdot \frac{2}{\inf _{[a, b]} r^{n} K(r)} . \tag{8}
\end{equation*}
$$

Recalling the definition of M, and (7), the right-hand inequality of (3) now follows with $B / A=n D$ where D is defined by (8).

To prove the left-hand inequality of (3) let $x \neq 0$ be given, say

$$
x=r \omega=r \sum_{i=1}^{n} c_{i}(\omega) \omega_{i}
$$

As above, we have

$$
\varphi^{p}(r \omega) \leqq C_{p} \sum_{i=1}^{n} \varphi^{p}\left(r c_{i} \omega_{i}\right)
$$

For each i, we may write $\omega=c_{i} \omega_{i}+|v| \tilde{\omega}_{i}$ where $v=\sum_{j \neq i} c_{j} \omega_{j}$ and $\tilde{\omega}_{t}=|v|^{-1} v$ if $v \neq 0$, or $\omega=c_{i} \omega_{i}$ if $v=0$. Hence by (1),

$$
F(r \omega) \geqq K\left(\left|c_{i}(\omega)\right|\right) F\left(r c_{i} \omega_{i}\right), \quad 1 \leqq i \leqq n
$$

so

$$
M(\omega) \leqq C_{p} \sum_{i=1}^{n} \int_{0}^{+\infty} \frac{\varphi^{p}\left(r c_{i} \omega_{i}\right) r^{n-1}}{K\left(\left|c_{i}(\omega)\right|\right) F\left(r c_{i} \omega_{i}\right)} \mathrm{d} r
$$

Set $r\left|c_{i}(\omega)\right|=s$, and this reduces to

$$
\begin{aligned}
M(\omega) & \leqq C_{p} \sum_{i=1}^{n}\left\{\int_{0}^{+\infty} \frac{\varphi^{p}\left(s\left(\pm \omega_{i}\right)\right) s^{n-1}}{F\left(s\left(\pm \omega_{i}\right)\right)} \mathrm{d} s\right\} \overline{\left|c_{i}(\omega)\right|^{n}} \frac{1}{K\left(\left|c_{i}(\omega)\right|\right)} \\
& \leqq C_{p} \sum_{i=1}^{n} \frac{\max \left[M\left(\omega_{i}\right), M\left(-\omega_{i}\right)\right]}{\mid\left(\left.c_{i}(\omega)\right|^{n} K\left(\left|c_{i}(\omega)\right|\right)\right.}, \quad \omega \in \Omega
\end{aligned}
$$

Hence, by (6),

$$
M \leqq C_{p} \sum_{i=1}^{n} \max \left[M\left(\omega_{\mathrm{i}}\right), M\left(-\omega_{\mathrm{i}}\right)\right] \int_{\Omega} \frac{\mathrm{d} \omega}{\left|c_{i}(\omega)\right|^{n} K\left(\left|c_{i}(\omega)\right|\right)},
$$

so that the first inequality of (3) will follow, with

$$
\begin{equation*}
A=C_{p} \max _{1 \leqq i \leqq n} I_{i}, \tag{9}
\end{equation*}
$$

provided

$$
\begin{equation*}
I_{i} \equiv \int_{\Omega} \frac{\mathrm{d} \omega}{\left|c_{i}(\omega)\right|^{n} K\left(\left|c_{i}(\omega)\right|\right)}<+\infty \quad \text { for } \quad 1 \leqq i \leqq n \tag{10}
\end{equation*}
$$

Precisely as in [3], by a rotation we can arrange that $c_{i}(\omega)=\cos \varphi_{1}$ so that

$$
\begin{aligned}
I_{i} & =\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\sin \varphi_{n-2} \cdots \sin ^{n-2} \varphi_{1}}{\left|\cos \varphi_{1}\right|^{n} K\left(\mid \cos \varphi_{1}\right)} \mathrm{d} \varphi_{1} \cdots \mathrm{~d} \varphi_{n-1} \\
& =2 \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{0}^{\pi / 2} \frac{\sin \varphi_{n-2} \cdots \sin ^{n-2} \varphi_{1}}{\left(\cos \varphi_{1}\right)^{n} K\left(\cos \varphi_{1}\right)} \mathrm{d} \varphi_{1} \cdots \mathrm{~d} \varphi_{n-1} .
\end{aligned}
$$

The condition $\int_{0}^{1} r^{-n} \mathrm{~d} r / K(r)<+\infty$ clearly implies that I_{i} is finite, and the proof is complete.

As a simple example, take $F(x)=b^{2}|x|^{\beta}+c^{2}|x|^{\gamma}$, where $b, c \neq 0$ and $\beta>\gamma>n-1$. Condition (1) is easily seen to be satisfied with

$$
K(r)=\min \left(r^{-\beta}, r^{-\gamma}\right)\left(=r^{-\gamma} \text { for } 0<r \leqq 1\right) .
$$

We conclude by noting that if we denote $M(\omega)$ in (2) by $M_{p}(\omega)$, and similarly write

$$
M_{p}=\int_{\mathbf{R}^{n}} \frac{\varphi^{p}(x)}{F(x)} \mathrm{d} x=\int_{\Omega} M_{p}(\omega) \mathrm{d} \omega,
$$

then for $0<p<q<+\infty$, we will have

$$
\begin{equation*}
M_{q}^{1 / q} \leqq A(p, q) M_{p}^{1 / p} \tag{11}
\end{equation*}
$$

provided the corresponding one-dimensional inequality

$$
\begin{equation*}
M_{q}^{1 / q}(\omega) \leqq B(p, q) M_{p}^{1 / p}(\omega) \quad(\omega \in \Omega) \tag{12}
\end{equation*}
$$

holds. Indeed, if we rewrite (7) as $M_{p}(\omega) \leqq D_{p} M_{p}$ and (12) holds, then it is easy to verify that (11) holds with $A(p, q)=B(p, q) \cdot D_{p}^{(1 / p-1 / q)}$. In the special case $F(x)=|x|^{n^{+} p \alpha}$ considered by Gosselin, it was noted that (12)-hence also (11)-does hold, but I do not know whether this is true for those F satisfying (1). A generalization of Gosselin's case of inequality (12) was proved in [1], but does not include (12) for F satisfying (1).

REFERENCES

1. P. R. Beesack: Comparable $L_{p^{-}}$norms of subadditive functions, (submitted).
2. C. H. Edwards, Jr.: Advanced calculus of several variables. New York 1973.
3. R. P. Gosselin: Integral norms of subadditive functions. Bull. Amer. Math. Soc. 69 (1963), 255-259.

Carleton University
Department of Mathematics Ottawa, Canada

[^0]: * Presented June 29, 1976 by D. S. Mitrinović.

