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550. SOME REMARKS ON A PAPER OF J. F. RIGBY*

Oene Bottema

1. In a recent paper [1] RIGBY derives a set of inequalities for the sides
of a triangle which, applied to a special case, gives the following formula for
s, R, r:

(I) S2~ (1
-

62) -1 (4 R2 + 4 (1 - 6 - 4 62)Rr + (3 + 8 6 + 5 62)r2),

for all values of 6 satisfying 0 ~ 6 < 1. For 6 = 0 we obtain BLUNDON'Sinequality

(2) s2~4R2+4Rr+3r2.

Author remarks that the right hand sides of (1) for different values of 6
can not be compared and that (2) is "just one of a whole range of best pos-
sible inequalities (I)". The term "best possible", as KLAMKIN has emphasized
more than once, must be used with much care and has always a relative sense.
RIGBY is formally right because it follows from this context that "best possible"
is meant by him in relation to a set of inequalities with two parameters 6, E
of which the second does not appear in (1). If we restrict ourselves to (1) pro-
per it must be remarked that there is no "best possible" in it. Indeed, if the
right hand side of (1) is denoted by A (6) we have

(3) A(6)-A(O)=4(l-62)-16(R-2r)(6R-(1 +6)r),

and as (1 + 6) > 26 it depends on the ratio R: r whether the difference is more
or less than zero.

2. Formula (1) is an inequality (and a rather complicated one) of the type

(4) s2~cx.R2+~Rr+yr2,

where th::: coefficients on the right hand side are fUnctions of a parameter. A
much simpler example is the following [2]:

1S2~ 4 R2 + - (ll - [L)Rr + [U2,
2

(5)

with a linear parameter [L, satisfying [L~ 3. For [L= 3 we have again (2). In
this case it is the best possible of the range (5); indeed, if B ([L) denotes the
right hand side of (5) we have

(6) 1
B ([L)- B (3) = - (3 - [L)(R - 2 r) r ~ O.3
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Comparing (1) and (5) we remark that both contain an in';?quality of the
typ~ S2~ 0(R2 + Yr2. RIGBY obtains the relation

(7)

which we reduce to

(8) s2~~(23 - V17) R2+ (4 + ffl)r2.
4

From (5), for !L= 11, we obtain

(9)

which is not only much simpler than (8), but also better.
Indeed, the difference between the right hand sides of (8) and (9) is

seen to be

(10)

which is positive for a non-equilateral triangle.

3. RIGBY gives also minima for S2 in terms of Rand r and derives

(11) s2~0(1R2+~lRr+Ylr2,

the coefficients being quadratic functions of a parameter.
We remark that a much simpler set reads [2]

1
s2~-(27-A)Rr+Ar2, A~-5.

2
(12)

(13)

From both (11) and (12) follows the STElNIG-BwNDON inequality

S2~ 16 Rr- 5 r2.

But while RIGBY derives from (11) that s2~27 r2, it follows from (12),

for A= 0, the stronger inequality S2~ 27
Rr.

2
The conclusion of our remarks may be that RIGBY'S work on sextic ine-

qualities, although of interest in it self, does not provide us with an optimal
procedure to obtain (s, R, r) inequalities of the type considered by him.
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