Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. № 544 - No 576 (1976), 18-24.
547. ON AN INEQUALITY OF IYENGAR*

Petar M. Vasić and Gradimir V. Milovanović
0. K. S. K. Iyengar [1] has proved the following:

Theorem A. Let $f$ be a differentiable function on $[a, b]$ and $\left|f^{\prime}(x)\right| \leqq M$. Then

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(b-a)(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{4}-\frac{1}{4 M}(f(b)-f(a))^{2} . \tag{0.1}
\end{equation*}
$$

Similar inequalities can be found in the book [2] by D. S. Mitrinović. Inequality ( 0.1 ) can be written in the form

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)}{4}\left(1-q^{2}\right), \tag{0.2}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\frac{|f(b)-f(a)|}{M(b-a)} . \tag{0.3}
\end{equation*}
$$

Remark. If in Theorem A we replace the condition $\left|f^{\prime}(x)\right| \leqq M$ by $m \leqq f^{\prime}(x) \leqq M$, we obtain the following inequality

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{(M-m)(b-a)}{2}\left(\frac{1}{4}-\frac{\left(\frac{f(b)-f(a)}{b-a}-\frac{M+m}{2}\right)^{2}}{(M-m)^{2}}\right) .
$$

In this paper we shall give some generalizations of Theorem A.

1. We use the following notation

$$
\begin{equation*}
A(f ; p)=\frac{\int_{a}^{b} p(x) f(x) \mathrm{d} x}{\int_{a}^{b} p(x) \mathrm{d} x} \tag{1.1}
\end{equation*}
$$

Theorem 1. Let $x \mapsto f(x)$ be a differentiable function defined on $[a, b]$ and $\left|f^{\prime}(x)\right| \leqq M$ for every $x \in(a, b)$. If $x \mapsto p(x)$ is an integrable function on $(a, b)$ such that

$$
0<c \leqq p(x) \leqq \lambda c \quad(\lambda \geqq 1, x \in[a, b]),
$$

[^0]the following inequality holds
\[

$$
\begin{equation*}
\left|A(f ; p)-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)}{2} \cdot \frac{(\lambda+q)\left(1-q^{2}\right)+2(\lambda-1) q}{2 \lambda(1+q)-(\lambda-1)\left(1+q^{2}\right)}, \tag{1.2}
\end{equation*}
$$

\]

where $A$ and $q$ are defined by (1.1) and (0.3) respectively.
Proof. From $\left|f^{\prime}(x)\right| \leqq M(\forall x \in(a, b))$ it follows
and

$$
-M(x-a) \leqq f(x)-f(a) \leqq M(x-a)
$$

i.e.,

$$
-M(b-x) \leqq f(b)-f(x) \leqq M(b-x),
$$

i.e.,

$$
f(a)-M(x-a) \leqq f(x) \leqq f(x)+M(x-a)
$$

and

$$
f(b)-M(b-x) \leqq f(x) \leqq f(b)+M(b-x),
$$

wherefrom

$$
\begin{align*}
& \max (f(a)-M(x-a), f(b)-M(b-x)) \leqq f(x)  \tag{1.3}\\
& \leqq \min (f(a)+M(x-a), f(b)+M(b-x)) .
\end{align*}
$$

Since, for every $\alpha, \beta \in \mathbf{R}$,

$$
\min (\alpha, \beta)=\frac{1}{2}(\alpha+\beta-|\beta-\alpha|) \text { and } \max (\alpha, \beta)=\frac{1}{2}(\alpha+\beta+|\beta-\alpha|)
$$

inequalities (1.3) become

$$
\begin{align*}
-\frac{1}{2}(M(b-a)-g(x)) \leqq f(x)-\frac{1}{2}( & f(a)+f(b))  \tag{1.4}\\
& \leqq \frac{1}{2}(M(b-a)-h(x)),
\end{align*}
$$

where

$$
g(x)=|M(2 x-a-b)+f(b)-f(a)| \text { and } h(x)=|M(2 x-a-b)-f(b)+f(a)| .
$$

If $p(x) \geqq 0$, it follows from (1.4):
(1.5) $-\frac{1}{2}\left(M(b-a) \int_{a}^{b} p(x) \mathrm{d} x-\int_{a}^{b} p(x) g(x) \mathrm{d} x\right)$

$$
\begin{aligned}
& \leqq \int_{a}^{b} p(x) f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b)) \int_{a}^{b} p(x) \mathrm{d} x \\
& \leqq \frac{1}{2}\left(M(b-a) \int_{a}^{b} p(x) \mathrm{d} x-\int_{a}^{b} p(x) h(x) \mathrm{d} x\right),
\end{aligned}
$$

i.e.,

$$
\begin{align*}
-\frac{1}{2}(M(b-a)-A(g ; p)) \leqq A & (f ; p)-\frac{1}{2}(f(a)+f(b))  \tag{1.6}\\
& \leqq \frac{1}{2}(M(b-a)-A(h ; p)) .
\end{align*}
$$

Since, $x \in[a, b]$, we have

$$
\begin{equation*}
0 \leqq g(x) \leqq M(b-a)(1+q) \text { and } 0 \leqq h(x) \leqq M(b-a)(1+q) . \tag{1.7}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mu=\frac{1}{b-a} \int_{a}^{b} g(x) \mathrm{d} x=\frac{1}{b-a} \int_{a}^{b} h(x) \mathrm{d} x=\frac{M(b-a)}{2}\left(1+q^{2}\right) . \tag{1.8}
\end{equation*}
$$

J. Karamata in [3] has proved the following result (transposed to the interval ( $a, b$ )):

If $p$ and $\Phi$ are integrable functions on $[a, b]$ and

$$
n \leqq \Phi(x) \leqq N, \mu=\frac{1}{b-a} \int_{a}^{b} \Phi(t) \mathrm{d} t, 0<c \leqq p(x) \leqq \lambda c \quad(\lambda \leqq 1),
$$

then

$$
\begin{equation*}
\frac{\lambda n(N-\mu)+N(\mu-n)}{\lambda(N-\mu)+(\mu-n)}=\frac{\int_{a}^{b} p(t) \Phi(t) \mathrm{d} t}{\int_{a}^{b} p(t) \mathrm{d} t} \leqq \frac{n(N-\mu)+\lambda N(\mu-n)}{(N-n)+\lambda(\mu-n)} . \tag{1.9}
\end{equation*}
$$

Starting from this result and using (1.7) and (1.8) we get

$$
\begin{equation*}
A(g ; p) \geqq \frac{M(b-a)(1+q) \frac{M(b-a)}{2}\left(1+q^{2}\right)}{\lambda M(b-a)(1+q)-(\lambda-1) \frac{M(b-a)}{2}\left(1+q^{2}\right)}=M(b-a) B(\lambda ; q) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
A(h ; p) \geqq M(b-a) B(\lambda ; q), \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
B(\lambda ; q)=\frac{(1+q)\left(1+q^{2}\right)}{2 \lambda(1+q)-(\lambda-1)\left(1+q^{2}\right)} . \tag{1.12}
\end{equation*}
$$

Combining (1.6), (1.10) and (1.11), we obtain (1.2).
Remark 1. The inequality (1.2) also holds if for $f$ we suppose only that the Lirschitz's condition:
is satisfied.

$$
|f(y)-f(x)| \leqq M|y-x| \quad(\forall x, y \in[a, b])
$$

Remark 2. If $p(x) \equiv 1(\Rightarrow \lambda=1)$, inequality (1.2) reduces to (0.2).
2. Now, we shall use the following result from theory of convex functions (see [2, p. 18]):
Theorem B. $1^{\circ}$ Function $f$ is convex on $[a, b]$ if and only if for every point $x_{0} \in[a, b]$ function $x \mapsto \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ is nondecreasing on $[a, b]$.
$2^{\circ}$ Differentiable function $f$ is convex if and only if $f^{\prime}$ is a nondecreasing function on $[a, b]$.
$3^{\circ}$ Twice differentiable function $f$ is convex on $[a, b]$ if and only if $f^{\prime \prime}(x) \geqq 0$ for all $x \in(a, b)$.

First, we shall prove the following:
Lemma 1. Let $x \mapsto F(x)$ be a differentiable function defined on $[a, b]$. The inequalities

$$
\begin{equation*}
-M \leqq F^{\prime}(x) \leqq M \quad(\forall x \in(a, b)) \tag{2.1}
\end{equation*}
$$

hold if and only if

$$
\begin{equation*}
x \mapsto F(x)+M(x-a) \text { is a nondecreasing function on }[a, b] \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x \mapsto F(x)-M(x-a) \text { is a nonincreasing function on }[a, b] . \tag{2.3}
\end{equation*}
$$

Proof. (a) The conditions are necessary. Suppose that inequalities (2.1) hold and let $a \leqq x \leqq y \leqq b$. Then
wherefrom

$$
-M(y-x) \leqq F(y)-F(x) \leqq M(y-x),
$$

$$
F(x)+M(x-a) \leqq F(y)+M(y-a) \text { and } F(y)-M(y-a) \leqq F(x)-M(x-a) .
$$

(b) The conditions (2.2) and (2.3) are sufficient. Let the conditions (2.2) and (2.3) be fulfilled. Then

$$
\begin{aligned}
& F^{\prime}(x)+M \geqq 0 \text { and } F^{\prime}(x)-M \leqq 0, \\
&-M \leqq F^{\prime}(x) \leqq M .
\end{aligned}
$$

i.e.,

This completes the proof.
From this lemma it follows:
Lemma 2. Let $x \mapsto F(x)$ be a differentiable function defined on $[a, b]$. Inequalities (2.1) hold if ond only if

$$
x \mapsto-F(x)-M(b-x) \text { is a nondecreasing function on }[a, b]
$$

and

$$
x \mapsto-F(x)+M(b-x) \text { is a nonincreasing function on }[a, b] .
$$

The Theorem 1 can be generalised as follows:
Theorem 2. Let $x \mapsto f(x)$ be a twice differentiable function defined on $[a, b]$ and let $\left|f^{\prime \prime}(x)\right| \leqq M$ for every $x \subseteq(a, b)$ and $f^{\prime}(a)=f^{\prime}(b)$. If $x \mapsto p(x)$ is an integrable function on $(a, b)$ such that

$$
\begin{equation*}
0<c \leqq p(x) \leqq \lambda c \quad(\lambda \geqq 1, x \in[a, b]) \tag{2.4}
\end{equation*}
$$

the following inequality

$$
\begin{gather*}
\left|A(f ; p)-\frac{1}{2}(f(a)+f(b))+\frac{1}{8}\left(f^{\prime}(a)+\frac{f(b)-f(a)}{b-a}\right) A\left(\frac{a+b}{2}-x ; p\right)\right|  \tag{2.5}\\
\leqq \frac{M(b-a)^{2}}{8} \cdot \frac{(\lambda+q)\left(1-q^{2}\right)+2(\lambda-1) q}{2 \lambda(1+q)-(\lambda-1)\left(1+q^{2}\right)}
\end{gather*}
$$

holds, where $A$ is defined by (1.1), and

$$
q=\frac{2}{M(b-a)}\left|\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)\right|
$$

Proof. Let

$$
\begin{equation*}
\left|f^{\prime \prime}(x)\right| \leqq M \quad(\forall x \in(a, b)) \tag{2.6}
\end{equation*}
$$

Then

$$
x \mapsto f(x)+\frac{M}{2}(x-a)^{2} \text { is a convex function on }[a, b]
$$

and

$$
x \mapsto f(x)-\frac{M}{2}(x-a)^{2} \text { is a concave function on }[a, b],
$$

from where, with regard to Theorem B, it follows that

$$
\begin{equation*}
x \mapsto \frac{f(x)-f(a)}{x-a}+\frac{M}{2}(x-a) \text {, is a nondecreasing function on }[a, b] \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
x \mapsto \frac{f(x)-f(a)}{x-a}-\frac{M}{2}(x-a) \text {, is a nonincreasing function on }[a, b] . \tag{2.8}
\end{equation*}
$$

Using (2.7), (2.8) and Lemma 1, we conclude that function $F$ defined on $[a, b]$ by

$$
F(x)=\left\{\begin{array}{cc}
\frac{f(x)-f(a)}{x-a} & (x \neq a) \\
f^{\prime}(a) & (x=a)
\end{array}\right.
$$

satisfies the conditions of Theorem 1 , with $\left|F^{\prime}(x)\right| \leqq \frac{M}{2}(\forall x \in(a, b))$.
Substituting $F$ in (1.5), i.e. in

$$
\begin{align*}
&-\frac{1}{2}\left(\frac{M}{2}(b-a) \int_{a}^{b} P(x) \mathrm{d} x-\int_{a}^{b} P(x) g(x) \mathrm{d} x\right)  \tag{2.9}\\
& \leqq \int_{a}^{b} P(x) F(x) \mathrm{d} x-\frac{1}{2}(F(a)+F(b)) \int_{a}^{b} P(x) \mathrm{d} x \\
& \leqq \frac{1}{2}\left(\frac{M}{2}(b-a) \int_{a}^{b} P(x) \mathrm{d} x-\int_{a}^{b} P(x) h(x) \mathrm{d} x\right)
\end{align*}
$$

where

$$
g(x)=\left|\frac{M}{2}(2 x-a-b)+F(b)-F(a)\right|
$$

and

$$
h(x)=\left|\frac{M}{2}(2 x-a-b)-F(b)+F(a)\right|
$$

and $P(x)=(x-a) p(x)(p(x)>0)$, we obtain

$$
\begin{align*}
& -\frac{1}{2}\left(\frac{M}{2}(b-a) A(x-a ; p)-A\left(g_{a} ; p\right)\right)  \tag{2.10}\\
& \leqq A(f ; p)-f(a)-\frac{1}{2}\left(f^{\prime}(a)+\frac{f(b)-f(a)}{b-a}\right) A(x-a ; p) \\
& \leqq \frac{1}{2}\left(\frac{M}{2}(b-a) A(x-a ; p)-A\left(h_{a} ; p\right)\right)
\end{align*}
$$

where $g_{a}(x)=(x-a) g(x)$ and $h_{a}(x)=(x-a) h(x)$.
Similarly, it follows from (2.6) that

$$
x \mapsto \frac{f(b)-f(x)}{b-x}-\frac{M}{2}(b-x) \text { is a nondecreasing function on }[a, b]
$$

and

$$
x \mapsto \frac{f(b)-f(x)}{b-x}+\frac{M}{2}(b-x) \text { is a nonincreasing function on }[a, b],
$$

whence, in respect of Lemma 2, we conclude that function $G$ is given by

$$
G(x)=\left\{\begin{array}{cc}
-\frac{f(b)-f(x)}{b-x} & (x \neq b) \\
-f^{\prime}(b) & (x=b),
\end{array}\right.
$$

which also satisfies the conditions of Theorem 1, with $\left|G^{\prime}(x)\right| \leqq \frac{M}{2}(\forall x \in(a, b))$.
Since $f^{\prime}(a)=f^{\prime}(b)$, we have

$$
\frac{G(b)-G(a)}{\frac{M}{2}(b-a)}=\frac{F(b)-F(a)}{\frac{M}{2}(b-a)}=\frac{2}{M(b-a)}\left(\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)\right) .
$$

If, we replace $F(x)$ and $P(x)$ by $G(x)$ and $(b-x) p(x)$ respectively, in (2.9), we obtain

$$
\begin{align*}
& -\frac{1}{2}\left(\frac{M}{2}(b-a) A(b-x ; p)+A\left(g_{b} ; p\right)\right)  \tag{2.11}\\
& \leqq A(f ; p)-f(b)-\frac{1}{2}\left(f^{\prime}(a)+\frac{f(b)-f(a)}{b-a}\right) A(b-x ; p) \\
& \quad \leqq \frac{1}{2}\left(\frac{M}{2}(b-a) A(b-x ; p)+A\left(h_{b} ; p\right)\right)
\end{align*}
$$

Since

$$
A\left(C_{1} f_{1}+C_{2} f_{2} ; p\right)=C_{1} A\left(f_{1} ; p\right)+C_{2} A\left(f_{2} ; p\right) \text { and } A(C ; p)=C
$$

where $C_{1}, C_{2}, C$ are arbitrary real constants, we find by adding (2.10) and (2.11)
(2.12) $-\frac{1}{4}\left(\frac{M}{2}(b-a)^{2}-(b-a) A(g ; p)\right)$

$$
\begin{array}{r}
\leqq A(f ; p)-\frac{1}{2}(f(a)+f(b))+\frac{1}{8}\left(f^{\prime}(a)+\frac{f(b)-f(a)}{b-a}\right) A\left(\frac{a+b}{2}-x ; p\right) \\
\leqq \frac{1}{4}\left(\frac{M}{2}(b-a)^{2}-(b-a) A(h ; p)\right) .
\end{array}
$$

With respect to (2.4), and applying (1.9), we have

$$
\begin{equation*}
A(g ; p) \geqq \frac{M}{2}(b-a) B(\lambda ; q) \text { and } A(h ; p) \geqq \frac{M}{2}(b-a) B(\lambda ; q), \tag{2.13}
\end{equation*}
$$

where $B$ is defined by (1.12).
Finally, using (2.12) and (2.13), we obtain (2.5), which proves the Theorem 2.

From Theorem 2, we directly get the following theorem.
Theorem 3. Let functions $x \mapsto f(x)$ satisfy the conditions as in Theorem 2 and let

$$
p\left(\frac{a+b}{2}-x\right)=p\left(\frac{a+b}{2}+x\right) \quad\left(\forall x \in\left[-\frac{b-a}{2}, \frac{b-a}{2}\right]\right) .
$$

Then

$$
\left|A(f ; p)-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{8} \cdot \frac{(\lambda+q)\left(1-q^{2}\right)+2(\lambda-1) q}{2 \lambda(1+q)-(\lambda-1)\left(1+q^{2}\right)},
$$

where $q$ is given by

$$
q=\frac{2}{M(b-a)}\left|\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)\right| .
$$

A corollary of this theorem is:
Corollary. Let $x \mapsto f(x)$ be a twice differentiable function defined on $[a, b]$ and such that $\left|f^{\prime}(x)\right| \leqq M$ for every $x \in(a, b)$ and $f^{\prime}(a)=f^{\prime}(b)$. Then

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(a)+f(b))\right| \leqq \frac{M(b-a)^{2}}{16}-\frac{1}{4 M}\left(\frac{f(b)-f(a)}{b-a}-f^{\prime}(a)\right)^{2} .
$$

This result is a natural extension of Theorem A .

## REFERENCES

1. K. S. Iyengar: Note on an inequality. Math. Student 6 (1938), 75-76.
2. D. S. Mitrinović (In cooperation with P. M. Vasić): Analytic Inequalities. Berlin-Heidelberg-New York, 1970.
3. J. Karamata: $O$ prvom stavu srednjih vrednosti odredenih integrala. Glas srpske kraljevske akademije. CLIV Beograd (1933), 119—144.

[^0]:    * Presented June 29, 1976 by D. S. Mitrinović.

